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7.4.2 DES algorithm

DES is a Feistel cipher which processes plaintext blocks of n = 64 bits, producing 64-bit
ciphertext blocks (Figure 7.8). The effective size of the secret keyK is k = 56 bits; more
precisely, the input key K is specified as a 64-bit key, 8 bits of which (bits 8, 16, . . . , 64)
may be used as parity bits. The 256 keys implement (at most) 256 of the 264! possible bijec-
tions on 64-bit blocks. A widely held belief is that the parity bits were introduced to reduce
the effective key size from 64 to 56 bits, to intentionally reduce the cost of exhaustive key
search by a factor of 256.
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Figure 7.8: DES input-output.

Full details of DES are given in Algorithm 7.82 and Figures 7.9 and 7.10. An overview
follows. Encryption proceeds in 16 stages or rounds. From the input keyK, sixteen 48-bit
subkeysKi are generated, one for each round. Within each round, 8 fixed, carefully selected
6-to-4 bit substitution mappings (S-boxes) Si, collectively denoted S, are used. The 64-bit
plaintext is divided into 32-bit halves L0 and R0. Each round is functionally equivalent,
taking 32-bit inputs Li−1 and Ri−1 from the previous round and producing 32-bit outputs
Li and Ri for 1 ≤ i ≤ 16, as follows:

Li = Ri−1; (7.4)

Ri = Li−1 ⊕ f(Ri−1, Ki), where f(Ri−1, Ki) = P (S(E(Ri−1)⊕Ki))(7.5)

HereE is a fixed expansion permutation mappingRi−1 from 32 to 48 bits (all bits are used
once; some are used twice). P is another fixed permutation on 32 bits. An initial bit per-
mutation (IP) precedes the first round; following the last round, the left and right halves are
exchanged and, finally, the resulting string is bit-permuted by the inverse of IP. Decryption
involves the same key and algorithm, but with subkeys applied to the internal rounds in the
reverse order (Note 7.84).

A simplified view is that the right half of each round (after expanding the 32-bit input
to 8 characters of 6 bits each) carries out a key-dependent substitution on each of 8 charac-
ters, then uses a fixed bit transposition to redistribute the bits of the resulting characters to
produce 32 output bits.

Algorithm 7.83 specifies how to compute the DES round keysKi, each of which con-
tains 48 bits of K. These operations make use of tables PC1 and PC2 of Table 7.4, which
are called permuted choice 1 and permuted choice 2. To begin, 8 bits (k8, k16, . . . , k64) of
K are discarded (by PC1). The remaining 56 bits are permuted and assigned to two 28-bit
variables C and D; and then for 16 iterations, both C and D are rotated either 1 or 2 bits,
and 48 bits (Ki) are selected from the concatenated result.
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7.82 Algorithm Data Encryption Standard (DES)

INPUT: plaintextm1 . . .m64; 64-bit keyK = k1 . . . k64 (includes 8 parity bits).
OUTPUT: 64-bit ciphertext block C = c1 . . . c64. (For decryption, see Note 7.84.)

1. (key schedule) Compute sixteen 48-bit round keysKi fromK using Algorithm 7.83.
2. (L0, R0) ← IP(m1m2 . . .m64). (Use IP from Table 7.2 to permute bits; split the

result into left and right 32-bit halvesL0 = m58m50 . . .m8,R0 = m57m49 . . .m7.)
3. (16 rounds) for i from 1 to 16, compute Li and Ri using Equations (7.4) and (7.5)

above, computing f(Ri−1, Ki) = P (S(E(Ri−1)⊕Ki)) as follows:

(a) ExpandRi−1 = r1r2 . . . r32 from 32 to 48 bits using E per Table 7.3:
T ← E(Ri−1). (Thus T = r32r1r2 . . . r32r1.)

(b) T ′ ← T⊕Ki. Represent T ′ as eight 6-bit character strings: (B1, . . . , B8) =
T ′.

(c) T ′′ ← (S1(B1), S2(B2), . . . S8(B8)). (Here Si(Bi) maps Bi = b1b2 . . . b6
to the 4-bit entry in row r and column c of Si in Table 7.8, page 260 where
r = 2 · b1+ b6, and b2b3b4b5 is the radix-2 representation of 0 ≤ c ≤ 15. Thus
S1(011011) yields r = 1, c = 13, and output 5, i.e., binary 0101.)

(d) T ′′′ ← P (T ′′). (UseP per Table 7.3 to permute the 32 bits ofT ′′ = t1t2 . . . t32,
yielding t16t7 . . . t25.)

4. b1b2 . . . b64 ← (R16, L16). (Exchange final blocks L16, R16.)

5. C ← IP−1(b1b2 . . . b64). (Transpose using IP−1 from Table 7.2;C = b40b8 . . . b25.)

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

IP−1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 7.2: DES initial permutation and inverse (IP and IP−1).

E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

Table 7.3: DES per-round functions: expansion E and permutation P .
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Figure 7.9: DES computation path.
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7.83 Algorithm DES key schedule

INPUT: 64-bit keyK = k1 . . . k64 (including 8 odd-parity bits).
OUTPUT: sixteen 48-bit keysKi, 1 ≤ i ≤ 16.

1. Define vi, 1 ≤ i ≤ 16 as follows: vi = 1 for i ∈ {1, 2, 9, 16}; vi = 2 otherwise.
(These are left-shift values for 28-bit circular rotations below.)

2. T ← PC1(K); represent T as 28-bit halves (C0, D0). (Use PC1 in Table 7.4 to select
bits fromK: C0 = k57k49 . . . k36,D0 = k63k55 . . . k4.)

3. For i from 1 to 16, computeKi as follows: Ci ← (Ci−1 ←↩ vi), Di ← (Di−1 ←↩
vi),Ki ← PC2(Ci, Di). (Use PC2 in Table 7.4 to select 48 bits from the concatena-
tion b1b2 . . . b56 of Ci andDi: Ki = b14b17 . . . b32. ‘←↩’ denotes left circular shift.)

If decryption is designed as a simple variation of the encryption function, savings result
in hardware or software code size. DES achieves this as outlined in Note 7.84.

7.84 Note (DES decryption) DES decryption consists of the encryption algorithm with the same
key but reversed key schedule, using in order K16,K15, . . . ,K1 (see Note 7.85). This
works as follows (refer to Figure 7.9). The effect of IP−1 is cancelled by IP in decryp-
tion, leaving (R16, L16); consider applying round 1 to this input. The operation on the left
half yields, rather than L0⊕f(R0,K1), now R16⊕f(L16,K16) which, since L16 = R15
and R16 = L15⊕f(R15,K16), is equal to L15⊕f(R15,K16)⊕f(R15,K16) = L15. Thus
round 1 decryption yields (R15, L15), i.e., inverting round 16. Note that the cancellation
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PC1
57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36

above for Ci; below forDi
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

PC2
14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 7.4: DES key schedule bit selections (PC1 and PC2).

of each round is independent of the definition of f and the specific value ofKi; the swap-
ping of halves combined with the XOR process is inverted by the second application. The
remaining 15 rounds are likewise cancelled one by one in reverse order of application, due
to the reversed key schedule.

7.85 Note (DES decryption key schedule) Subkeys K1, . . . ,K16 may be generated by Algo-
rithm 7.83 and used in reverse order, or generated in reverse order directly as follows. Note
that afterK16 is generated, the original values of the 28-bit registers C andD are restored
(each has rotated 28 bits). Consequently, and due to the choice of shift-values, modifying
Algorithm 7.83 as follows generates subkeys in orderK16, . . . ,K1: replace the left-shifts
by right-shift rotates; change the shift value v1 to 0.

7.86 Example (DES test vectors) The plaintext “Now is the time for all ”, represented as a
string of 8-bit hex characters (7-bit ASCII characters plus leading 0-bit), and encrypted us-
ing the DES key specified by the hex string K = 0123456789ABCDEF results in the
following plaintext/ciphertext:
P = 4E6F772069732074 68652074696D6520 666F7220616C6C20

C = 3FA40E8A984D4815 6A271787AB8883F9 893D51EC4B563B53. �

7.4.3 DES properties and strength

There are many desirable characteristics for block ciphers. These include: each bit of the
ciphertext should depend on all bits of the key and all bits of the plaintext; there should be no
statistical relationship evident between plaintext and ciphertext; altering any single plain-
text or key bit should alter each ciphertext bit with probability 12 ; and altering a ciphertext
bit should result in an unpredictable change to the recovered plaintext block. Empirically,
DES satisfies these basic objectives. Some known properties and anomalies of DES are
given below.

(i) Complementation property

7.87 Fact Let E denote DES, and x the bitwise complement of x. Then y = EK(x) implies
y = EK(x). That is, bitwise complementing both the keyK and the plaintext x results in
complemented DES ciphertext.

Justification: Compare the first round output (see Figure 7.10) to (L0, R0) for the uncom-
plemented case. The combined effect of the plaintext and key being complemented results
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in the inputs to the XOR preceding the S-boxes (the expanded Ri−1 and subkeyKi) both
being complemented; this double complementation cancels out in the XOR operation, re-
sulting in S-box inputs, and thus an overall result f(R0,K1), as before. This quantity is
then XORed (Figure 7.9) to L0 (previouslyL0), resulting in L1 (rather than L1). The same
effect follows in the remaining rounds.

The complementationproperty is normally of no help to a cryptanalyst in known-plain-
text exhaustive key search. If an adversary has, for a fixed unknown key K, a chosen-
plaintext set of (x, y) data (P1, C1), (P1, C2), then C2 = EK(P1) implies C2 = EK(P1).
Checking if the key K with plaintext P1 yields either C1 or C2 now rules out two keys
with one encryption operation, thus reducing the expected number of keys required before
success from 255 to 254. This is not a practical concern.

(ii) Weak keys, semi-weak keys, and fixed points

If subkeys K1 to K16 are equal, then the reversed and original schedules create identical
subkeys: K1 = K16, K2 = K15, and so on. Consequently, the encryption and decryption
functions coincide. These are called weak keys (and also: palindromic keys).

7.88 Definition A DES weak key is a keyK such thatEK(EK(x)) = x for all x, i.e., defining
an involution. A pair of DES semi-weak keys is a pair (K1,K2) with EK1(EK2(x)) = x.

Encryption with one key of a semi-weak pair operates as does decryption with the other.

7.89 Fact DES has four weak keys and six pairs of semi-weak keys.

The four DES weak keys are listed in Table 7.5, along with corresponding 28-bit vari-
ables C0 and D0 of Algorithm 7.83; here {0}j represents j repetitions of bit 0. Since C0
andD0 are all-zero or all-one bit vectors, and rotation of these has no effect, it follows that
all subkeysKi are equal and an involution results as noted above.

The six pairs of DES semi-weak keys are listed in Table 7.6. Note their defining prop-
erty (Definition 7.88) occurs when subkeysK1 throughK16 of the first key, respectively,
equal subkeysK16 throughK1 of the second. This requires that a 1-bit circular left-shift of
each of C0 andD0 for the first 56-bit key results in the (C0, D0) pair for the second 56-bit
key (see Note 7.84), and thereafter left-rotating Ci and Di one or two bits for the first re-
sults in the same value as right-rotating those for the second the same number of positions.
The values in Table 7.6 satisfy these conditions. Given any one 64-bit semi-weak key, its
paired semi-weak key may be obtained by splitting it into two halves and rotating each half
through 8 bits.

7.90 Fact LetE denote DES. For each of the four DES weak keysK, there exist 232 fixed points
ofEK , i.e., plaintextsx such thatEK(x) = x. Similarly, four of the twelve semi-weak keys
K each have 232 anti-fixed points, i.e., x such that EK(x) = x.

The four semi-weak keys of Fact 7.90 are in the upper portion of Table 7.6. These are
called anti-palindromic keys, since for theseK1 = K16,K2 = K15, and so on.

(iii) DES is not a group

For a fixed DES key K, DES defines a permutation from {0, 1}64 to {0, 1}64. The set of
DES keys defines 256 such (potentially different) permutations. If this set of permutations
was closed under composition (i.e., given any two keysK1,K2, there exists a third keyK3
such thatEK3(x) = EK2(EK1(x)) for all x) then multiple encryption would be equivalent
to single encryption. Fact 7.91 states that this is not the case for DES.
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weak key (hexadecimal) C0 D0

0101 0101 0101 0101 {0}28 {0}28

FEFE FEFE FEFE FEFE {1}28 {1}28

1F1F 1F1F 0E0E 0E0E {0}28 {1}28

E0E0 E0E0 F1F1 F1F1 {1}28 {0}28

Table 7.5: Four DES weak keys.

C0 D0 semi-weak key pair (hexadecimal) C0 D0

{01}14 {01}14 01FE 01FE 01FE 01FE, FE01 FE01 FE01 FE01 {10}14 {10}14

{01}14 {10}14 1FE0 1FE0 0EF1 0EF1, E01F E01F F10E F10E {10}14 {01}14

{01}14 {0}28 01E0 01E0 01F1 01F1, E001 E001 F101 F101 {10}14 {0}28

{01}14 {1}28 1FFE 1FFE 0EFE 0EFE, FE1F FE1F FE0E FE0E {10}14 {1}28

{0}28 {01}14 011F 011F 010E 010E, 1F01 1F01 0E01 0E01 {0}28 {10}14

{1}28 {01}14 E0FE E0FE F1FE F1FE, FEE0 FEE0 FEF1 FEF1 {1}28 {10}14

Table 7.6: Six pairs of DES semi-weak keys (one pair per line).

7.91 Fact The set of 256 permutations defined by the 256 DES keys is not closed under func-
tional composition. Moreover, a lower bound on the size of the group generated by com-
posing this set of permutations is 102499.

The lower bound in Fact 7.91 is important with respect to using DES for multiple en-
cryption. If the group generated by functional composition was too small, then multiple
encryption would be less secure than otherwise believed.

(iv) Linear and differential cryptanalysis of DES

Assuming that obtaining enormous numbers of known-plaintext pairs is feasible, linear
cryptanalysis provides the most powerful attack on DES to date; it is not, however, con-
sidered a threat to DES in practical environments. Linear cryptanalysis is also possible in a
ciphertext-only environment if some underlying plaintext redundancy is known (e.g., parity
bits or high-order 0-bits in ASCII characters).

Differential cryptanalysis is one of the most general cryptanalytic tools to date against
modern iterated block ciphers, including DES, Lucifer, and FEAL among many others. It is,
however, primarily a chosen-plaintext attack. Further information on linear and differential
cryptanalysis is given in §7.8.

7.92 Note (strength of DES) The complexity (see §7.2.1) of the best attacks currently known
against DES is given in Table 7.7; percentages indicate success rate for specified attack pa-
rameters. The ‘processing complexity’ column provides only an estimate of the expected
cost (operation costs differ across the various attacks); for exhaustive search, the cost is in
DES operations. Regarding storage complexity, both linear and differential cryptanalysis
require only negligible storage in the sense that known or chosen texts can be processed
individually and discarded, but in a practical attack, storage for accumulated texts would
be required if ciphertext was acquired prior to commencing the attack.
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attack method data complexity storage processing

known chosen complexity complexity

exhaustive precomputation — 1 256 1 (table lookup)

exhaustive search 1 — negligible 255

linear cryptanalysis 243 (85%) — for texts 243

238 (10%) — for texts 250

differential cryptanalysis — 247 for texts 247

255 — for texts 255

Table 7.7: DES strength against various attacks.

7.93 Remark (practicality of attack models) To be meaningful, attack comparisons based on
different models (e.g., Table 7.7) must appropriately weigh the feasibility of extracting (ac-
quiring) enormous amounts of chosen (known) plaintexts, which is considerably more dif-
ficult to arrange than a comparable number of computing cycles on an adversary’s own ma-
chine. Exhaustive search with one known plaintext-ciphertext pair (for ciphertext-only, see
Example 7.28) and 255 DES operations is significantly more feasible in practice (e.g., using
highly parallelized custom hardware) than linear cryptanalysis (LC) requiring 243 known
pairs.

While exhaustive search, linear, and differential cryptanalysis allow recovery of a DES
key and, therefore, the entire plaintext, the attacks of Note 7.8, which become feasible once
about 232 ciphertexts are available, may be more efficient if the goal is to recover only part
of the text.

7.5 FEAL

The Fast Data Encipherment Algorithm (FEAL) is a family of algorithms which has played
a critical role in the development and refinement of various advanced cryptanalytic tech-
niques, including linear and differential cryptanalysis. FEAL-N maps 64-bit plaintext to
64-bit ciphertext blocks under a 64-bit secret key. It is anN -round Feistel cipher similar to
DES (cf. Equations (7.4), (7.5)), but with a far simpler f -function, and augmented by initial
and final stages which XOR the two data halves as well as XOR subkeys directly onto the
data halves.

FEAL was designed for speed and simplicity, especially for software on 8-bit micro-
processors (e.g., chipcards). It uses byte-oriented operations (8-bit addition mod 256, 2-bit
left rotation, and XOR), avoids bit-permutations and table look-ups, and offers small code
size. The initial commercially proposed version with 4 rounds (FEAL-4), positioned as a
fast alternative to DES, was found to be considerably less secure than expected (see Ta-
ble 7.10). FEAL-8 was similarly found to offer less security than planned. FEAL-16 or
FEAL-32 may yet offer security comparable to DES, but throughput decreases as the num-
ber of rounds rises. Moreover, whereas the speed of DES implementations can be improved
through very large lookup tables, this appears more difficult for FEAL.

Algorithm 7.94 specifies FEAL-8. The f -function f(A, Y )maps an input pair of 32×
16 bits to a 32-bit output. Within the f function, two byte-oriented data substitutions (S-
boxes) S0 and S1 are each used twice; each maps a pair of 8-bit inputs to an 8-bit output
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