Exercice 1 (Questions de cours.)

Donner l'énoncé ainsi que la démonstration des résultats suivants.

- 1. Rappeler l'inégalité de Cauchy-Schwarz dans \mathbb{R}^n , avec le cas d'égalité.
- 2. Que peut-on dire de N_2 sur \mathbb{R}^n ?
- 3. Prouver que toute suite convergente est bornée.

EXERCICE 2 (Exercice préparé.)

Soit
$$A = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & 1 \\ -2 & -1 & 3 \end{pmatrix}$$
.

- 1. Déterminer le polynôme caractéristique de A.
- 2. En faisant une division euclidienne, donner une relation entre A^n , A^2 , A, et I_3 .

Exercice 3

Justifier si les propositions suivantes sont vraies ou fausses.

- 1. Si $(E, ||\cdot||)$ est un espace vectoriel normé, $x \in E$, r > 0, et B(x, r) est la boule de centre x et de rayon r, alors pour tout $\lambda > 0$, $\lambda B(x, r) = B(x, \lambda r)$.
- 2. $N:(x,y)\mapsto |5x+3y|$ est une norme sur \mathbb{R}^2 .
- 3. Soit $(E, ||\cdot||)$ un espace vectoriel normé, et x, y deux vecteurs de E tels que ||x+y|| = ||x|| + ||y||. Alors $x \in \text{Vect } y$.
- 4. Soit $E = \mathbb{R}_1[X]$, alors $N : P \mapsto |P(0)| + |P(1)|$ est une norme sur E.
- 5. Si N_1 et N_2 sont deux normes équivalentes sur E, et si on note B_1 (resp. B_2) la boule unité pour N_1 (resp. N_2), alors il existe a, b tels que $aB_1 \subset B_2 \subset bB_1$.
- 6. Une suite (u_n) de l'espace vectoriel normé $(E, ||\cdot||)$ converge si et seulement si toute suite extraite de (u_n) converge.

Exercice 4

Soit E un espace vectoriel normé. Soit $a, b \in E$ et r, s > 0. Montrer que

$$B(a,r) + B(b,s) = B(a+b,r+s).$$

Exercice 5

Soit N et N' deux normes sur E. On suppose $B(0,1) \subset B'(0,1)$. Montrer

$$\forall x \in E, N'(x) < N(x).$$

EXERCICE 6

Soit E un espace vectoriel normé. Soit F un sous-espace de E, contenant une boule ouverte de rayon R>0. Montrer que F=E.

Exercice 7

Pour tous réels $x, y \in \mathbb{R}$, on pose

$$N(x,y) = \sup_{0 \le t \le 1} |x + ty|.$$

Montrer que N est une norme. Représenter la boule unité fermée de centre O.

Exercice 8

Soient N_1 et N_2 deux normes sur un espace vectoriel E. On pose $N = \max(N_1, N_2)$. Démontrer que N est une norme sur E.

Exercice 9

Soit $a_1, \ldots, a_n \in \mathbb{R}$ des réels et $N : \mathbb{R}^n \to \mathbb{R}$ définie par

$$N(x_1, \dots, x_n) = a_1|x_1| + \dots + a_n|x_n|.$$

Donner une condition nécessaire et suffisante portant sur les a_k pour que N soit une norme sur \mathbb{R}^n .

Exercice 10

Soit E l'ensemble des suites réelles bornées. On rappelle que $N(u) = \sup_{n \in \mathbb{N}} |u_n|$ définit une norme sur E. On définit

$$N'(u) = \sup_{n \in \mathbb{N}} (|u_n| + |u_{2n}|).$$

- 1. Montrer que N' est une norme sur E.
- 2. Montrer que N et N' sont équivalentes et donner les valeurs optimales α et β telles que

$$\alpha N \le N' \le \beta N$$
.

Exercice 11

Soit (u_n) une suite de $(\mathbb{R}^m, ||\cdot||_{\infty})$ telle que chacune des suites composantes admet une valeur d'adhérence. La suite u admet-elle une valeur d'adhérence ?

Exercice 12

Soit (u_n) une suite de nombres réels.

- 1. On suppose que u est croissante et admet une suite extraite convergente. Que dire de u ?
- 2. On suppose que u est croissante et admet une suite extraite majorée. Que dire de u ?
- 3. On suppose que u n'est pas majorée. Montrer qu'elle admet une suite extraite qui diverge vers $+\infty$.