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Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication

I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)

I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques

I Schönhage-Strassen (1971)
I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)

I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .

I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

MOTIVATION

I Computations in an algebra A
I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I Lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(n log n) algorithm [Harvey, Van Der Hoeven ’19]

2 / 12



Motivation Bilinear complexity Symmetries

BILINEAR COMPLEXITY: INTUITION

I A an algebra over K
I bilinear complexity: number of subproduct in K needed

to compute a product in A

Karatsuba:
(a0 + a1X)(b0 + b1X) =

a0b0 + (a0b1 + a1b0)X + a1b1X2

with 
c0 = a0b0
c1 = a1b1
c2 = (a0 + a1)(b0 + b1)

I / Hard to compute the bilinear complexity of a product:
unkwown even for the 3× 3 matrix product
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Motivation Bilinear complexity Symmetries

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Assymptotically: O(n1.58) instead of O(n2)
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Motivation Bilinear complexity Symmetries

BILINEAR COMPLEXITY: DEFINITION

Definition
The bilinear complexity of the product in A is the minimal
integer r ∈ N such that you can write, for all x, y ∈ A

xy =

r∑
j=1

ϕj(x)ψj(y) · αj

with ϕj, ψj linear forms and αj elements of A.

I ϕj(x): linear combination of the coordinates xi of x
I ψj(y): linear combination of the coordinates yi of y
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Motivation Bilinear complexity Symmetries

NOTATIONS AND QUESTIONS

I µq(m) = bilinear complexity of the product in A = Fqm

Two independent questions:
I What is the asymptotic comportment of µq(m)?

I µq(m) is linear in m
I Evaluation-interpolation techniques:

I [Chudnovsky-Chudnovsky ’87]
I [Shparlinski-Tsfasman-Vladut ’92]
I [Randriambololona ’12]
I . . .

I Can we find values µq(m) for small m?

I Clever exhaustive search [BDEZ ’12] [Covanov ’18]
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Motivation Bilinear complexity Symmetries

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:
I P(X) = a0 + a1X,Q(X) = b0 + b1X

Big news! Karatsuba is an evaluation-interpolation scheme!

(on the projective line P1)

I c0 = P(0)Q(0) = PQ(0) = a0b0

I c1 = P(1)Q(1) = PQ(1) = (a0 + a1)(b0 + b1)

I c2 = c∞ = P(∞)Q(∞) = PQ(∞) = a1b1

with R(∞) = leading coefficient of R
I When studying A = Fqm for m→∞, one needs many

points of evaluation
; use a curve on Fq with many points for evaluations
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Motivation Bilinear complexity Symmetries

SYMMETRIC DECOMPOSITIONS

I A commutative algebra

Classic decompositions Symmetric decompositions
xy =

∑r
j=1 ϕj(x)ψj(y) · αj yx = xy =

∑r
j=1 ϕj(x)ϕj(y) · αj

Notation: for A = Fqm , we note µsym
q (m) the minimal length r in

a symmetric decomposition
I Assymptotics: µsym

q (m) is linear in m
I Small values: smaller search space ; faster algorithms
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Motivation Bilinear complexity Symmetries

EVEN MORE SYMMETRIC DECOMPOSITIONS

I A = Fqm

I every linear form ϕ can be written x 7→ Tr(αx) for some
α ∈ Fqm , with Tr the trace of Fqm/Fq

I we can rewrite the formula

, and even ask βj = λjαj

xy =

r∑
j=1

ϕj(x)ϕj(y) · βj

with λj ∈ Fq scalars
I we call these formulae trisymmetric decompositions
I we note µtri

q (m) the minimal r in such formulae
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Motivation Bilinear complexity Symmetries

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

I A = F32 ∼= F3[z]/(z2 − z− 1) ∼= F3(ζ)

I x, y ∈ A, x = x0 + x1ζ and y = y0 + y1ζ

(x0 + x1ζ)(y0 + y1ζ) = (x0y0 + x1y1) + (x0y1 + x1y0 + x1y1)ζ

xy = −Tr(1× x) Tr(1× y) · 1− Tr(ζ × x) Tr(ζ × y) · ζ
+Tr((ζ − 1)× x) Tr((ζ − 1)× y) · (ζ − 1)

with
Tr(x) Tr(y) = (x0 − x1)(y0 − y1)
Tr((ζ − 1)x) Tr((ζ − 1)y) = (x0 + x1)(y0 + y1)
Tr(ζx) Tr(ζy) = x0y0

10 / 12
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ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µq(m) ≤

?

µ
sym
q (m) ≤

?

µtri
q (m)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for q = 2,m ≥ 3.

I Assymptotics: linearity in m can be obtained for
symmetric decomposition in Fqm in higher dimensions

I Corollary: µtri
q (m) is also linear in m

I Small values: usual algorithms do not work

I We provide an ad hoc exhaustive search algorithm
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CONCLUSION
Bilinear complexity:
I important notion in symbolic computation
I any bilinear map can be studied

Symmetric complexity:
I Generalization to the case of t-variable products, t ≥ 3

Trisymmetric complexity:
I is linear in the extension degree
I small values can be found through exhaustive search

Future work:
I distinguish µtri

q from µ
sym
q for q ≥ 3

I find better bounds than those already known

Thank you!
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