Trisymmetric multiplication formulae in finite fields

Hugues Randriambololona, Édouard Rousseau

July 4, 2020

► Computations in an algebra *A*

▶ Computations in an algebra *A*

- multiplications: expensive ③
- additions, scalar multiplications: cheap ©

▶ Computations in an algebra *A*

- multiplications: expensive ③
- additions, scalar multiplications: cheap ©

we want to study/reduce the cost of multiplication

- ► Computations in an algebra *A*
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject

► Computations in an algebra *A*

- multiplications: expensive ③
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)

- ► Computations in an algebra *A*
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - ► Toom-Cook (1963), evaluation-interpolation techniques

- ► Computations in an algebra *A*
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)

- ► Computations in an algebra *A*
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)
 - ► ...

- ► Computations in an algebra *A*
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)
 - ▶ ...
 - ► *O*(*n* log *n*) algorithm [Harvey, Van Der Hoeven '19]

Motivation	Bilinear complexity
○●○	000

- ▶ \mathcal{A} an algebra over \mathbb{K}
- ▶ bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

$$a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$$

Motivation	Bilinear complexity
⊙●○	000

- ▶ \mathcal{A} an algebra over \mathbb{K}
- ▶ bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

 $(a_0 + a_1 X)(b_0 + b_1 X) =$ $a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$

Motivation	Bilinear comple:
000	000

- ▶ \mathcal{A} an algebra over \mathbb{K}
- ▶ bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

 $c_0 + (c_2 - c_1 - c_0)X + c_1 X^2$

with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

Motivation	Bilinear complex
000	000

- ▶ \mathcal{A} an algebra over \mathbb{K}
- bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

$$c_0 + (c_2 - c_1 - c_0)X + c_1 X^2$$

with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

Motivation	Bilinear complexity
000	000

- ▶ \mathcal{A} an algebra over \mathbb{K}
- bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

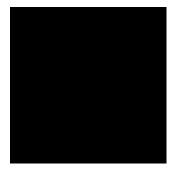
$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

$$c_0 + (c_2 - c_1 - c_0)X + c_1 X^2$$

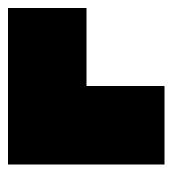
with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

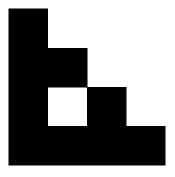
Solution Hard to compute the bilinear complexity of a product: unkwown even for the 3 × 3 matrix product



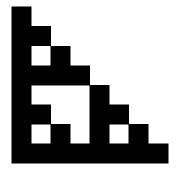
COMPLEXITY OF KARATSUBA'S ALGORITHM



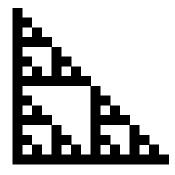
Degree 2: 3 multiplications instead of 4



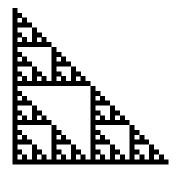
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy



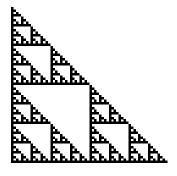
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$



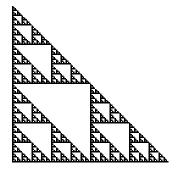
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$



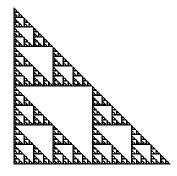
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$



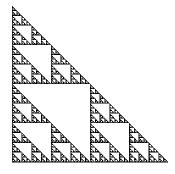
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$



- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$



- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$



- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Definition

The **bilinear complexity** of the product in A is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in A$

$$xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$$

with φ_j, ψ_j linear forms and α_j elements of \mathcal{A} .

Definition

The **bilinear complexity** of the product in A is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in A$

$$xy = \sum_{j=1}^r \varphi_j(x)\psi_j(y) \cdot \alpha_j$$

with φ_j , ψ_j linear forms and α_j elements of \mathcal{A} .

- $\varphi_j(x)$: linear combination of the coordinates x_i of x
- $\psi_i(y)$: linear combination of the coordinates y_i of y

Definition

The **bilinear complexity** of the product in A is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in A$

$$xy = \sum_{j=1}^r \varphi_j(x)\psi_j(y) \cdot \alpha_j$$

with φ_j, ψ_j linear forms and α_j elements of \mathcal{A} .

- $\varphi_i(x)$: linear combination of the coordinates x_i of x
- $\psi_i(y)$: linear combination of the coordinates y_i of y

• $\mu_q(m)$ = bilinear complexity of the product in $\mathcal{A} = \mathbb{F}_{q^m}$

Two independent questions:

• What is the asymptotic comportment of $\mu_q(m)$?

• Can we find values $\mu_q(m)$ for small *m*?

• $\mu_q(m)$ = bilinear complexity of the product in $\mathcal{A} = \mathbb{F}_{q^m}$

Two independent questions:

- What is the asymptotic comportment of $\mu_q(m)$?
 - $\mu_q(m)$ is **linear** in *m*

• Can we find values $\mu_q(m)$ for small *m*?

• $\mu_q(m)$ = bilinear complexity of the product in $\mathcal{A} = \mathbb{F}_{q^m}$

Two independent questions:

- What is the asymptotic comportment of $\mu_q(m)$?
 - $\mu_q(m)$ is **linear** in *m*
 - Evaluation-interpolation techniques:

• Can we find values $\mu_q(m)$ for small *m*?

• $\mu_q(m)$ = bilinear complexity of the product in $\mathcal{A} = \mathbb{F}_{q^m}$

Two independent questions:

...

- What is the asymptotic comportment of $\mu_q(m)$?
 - $\mu_q(m)$ is **linear** in *m*
 - Evaluation-interpolation techniques:
 - [Chudnovsky-Chudnovsky '87]
 - ▶ [Shparlinski-Tsfasman-Vladut ′92]
 - [Randriambololona '12]
- Can we find values $\mu_q(m)$ for small *m*?

• $\mu_q(m)$ = bilinear complexity of the product in $\mathcal{A} = \mathbb{F}_{q^m}$

Two independent questions:

- What is the asymptotic comportment of $\mu_q(m)$?
 - $\mu_q(m)$ is **linear** in *m*
 - Evaluation-interpolation techniques:
 - [Chudnovsky-Chudnovsky '87]
 - ▶ [Shparlinski-Tsfasman-Vladut ′92]
 - [Randriambololona '12]
 ...
- Can we find values $\mu_q(m)$ for small *m*?
 - Clever exhaustive search [BDEZ '12] [Covanov '18]

Motivation	Bilinear complexity
000	000

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:

►
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:

►
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Big news! Karatsuba is an evaluation-interpolation scheme!

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:

▶
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Big news! Karatsuba is an evaluation-interpolation scheme!

•
$$c_0 = P(0)Q(0) = PQ(0) = a_0b_0$$

Karatsuba again:

• $P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$

Big news! Karatsuba is an evaluation-interpolation scheme!

•
$$c_0 = P(0)Q(0) = PQ(0) = a_0b_0$$

• $c_1 = P(1)Q(1) = PQ(1) = (a_0 + a_1)(b_0 + b_1)$

Karatsuba again:

• $P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$

Big news! Karatsuba is an evaluation-interpolation scheme!

Karatsuba again:

►
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Big news! Karatsuba is an evaluation-interpolation scheme! (on the **projective line** \mathbb{P}^1)

Karatsuba again:

•
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Big news! Karatsuba is an evaluation-interpolation scheme! (on the **projective line** \mathbb{P}^1)

•
$$c_0 = P(0)Q(0) = PQ(0) = a_0b_0$$

• $c_1 = P(1)Q(1) = PQ(1) = (a_0 + a_1)(b_0 + b_1)$
• $c_2 = c_{\infty} = P(\infty)Q(\infty) = PQ(\infty) = a_1b_1$
with $R(\infty)$ = leading coefficient of R

• When studying $\mathcal{A} = \mathbb{F}_{q^m}$ for $m \to \infty$, one needs **many points** of evaluation

 \rightsquigarrow use a **curve** on \mathbb{F}_q with **many points** for evaluations

► *A* commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

► *A* commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

► *A* commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

Notation: for $\mathcal{A} = \mathbb{F}_{q^m}$, we note $\mu_q^{\text{sym}}(m)$ the minimal length *r* in a **symmetric** decomposition

► *A* commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

Notation: for $\mathcal{A} = \mathbb{F}_{q^m}$, we note $\mu_q^{\text{sym}}(m)$ the minimal length *r* in a **symmetric** decomposition

• Assymptotics: $\mu_q^{\text{sym}}(m)$ is linear in *m*

► *A* commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

Notation: for $\mathcal{A} = \mathbb{F}_{q^m}$, we note $\mu_q^{\text{sym}}(m)$ the minimal length *r* in a **symmetric** decomposition

- Assymptotics: $\mu_q^{\text{sym}}(m)$ is linear in *m*
- ► Small values: smaller search space ~→ faster algorithms

 $\blacktriangleright \mathcal{A} = \mathbb{F}_{q^m}$

• every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$

we can rewrite the formula

$$xy = \sum_{j=1}^r \varphi_j(x)\varphi_j(y) \cdot \beta_j$$

 $\blacktriangleright \mathcal{A} = \mathbb{F}_{q^m}$

• every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$

we can rewrite the formula

$$xy = \sum_{j=1}^{r} \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \beta_j$$

- $\blacktriangleright \mathcal{A} = \mathbb{F}_{q^m}$
- every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

with $\lambda_j \in \mathbb{F}_q$ scalars

- $\blacktriangleright \ \mathcal{A} = \mathbb{F}_{q^m}$
- every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^r \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

with $\lambda_j \in \mathbb{F}_q$ scalars

we call these formulae trisymmetric decompositions

- $\blacktriangleright \ \mathcal{A} = \mathbb{F}_{q^m}$
- every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^r \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

with $\lambda_j \in \mathbb{F}_q$ scalars

- we call these formulae trisymmetric decompositions
- we note $\mu_q^{\text{tri}}(m)$ the minimal *r* in such formulae

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

•
$$\mathcal{A} = \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

•
$$x, y \in \mathcal{A}, x = x_0 + x_1 \zeta$$
 and $y = y_0 + y_1 \zeta$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

•
$$\mathcal{A} = \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

•
$$x, y \in \mathcal{A}, x = x_0 + x_1 \zeta$$
 and $y = y_0 + y_1 \zeta$

$$(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

•
$$\mathcal{A} = \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

• $x, y \in \mathcal{A}, x = x_0 + x_1\zeta$ and $y = y_0 + y_1\zeta$
 $(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$

$$\begin{array}{rcl} xy & = & -\operatorname{Tr}(1 \times x)\operatorname{Tr}(1 \times y) \cdot 1 - \operatorname{Tr}(\zeta \times x)\operatorname{Tr}(\zeta \times y) \cdot \zeta \\ & & +\operatorname{Tr}((\zeta - 1) \times x)\operatorname{Tr}((\zeta - 1) \times y) \cdot (\zeta - 1) \end{array}$$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

$$\begin{array}{rcl} xy & = & -\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1 - \operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\ & & + \operatorname{Tr}((\zeta - 1) \times x) \operatorname{Tr}((\zeta - 1) \times y) \cdot (\zeta - 1) \end{array}$$

with

$$\begin{cases} \operatorname{Tr}(x) \operatorname{Tr}(y) &= (x_0 - x_1)(y_0 - y_1) \\ \operatorname{Tr}((\zeta - 1)x) \operatorname{Tr}((\zeta - 1)y) &= (x_0 + x_1)(y_0 + y_1) \\ \operatorname{Tr}(\zeta x) \operatorname{Tr}(\zeta y) &= x_0 y_0 \end{cases}$$

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \le \mu_q^{\text{sym}}(m) \le \mu_q^{\text{tri}}(m)$$

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $q = 2, m \ge 3$ *.*

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $q = 2, m \ge 3$ *.*

Assymptotics: linearity in *m* can be obtained for symmetric decomposition in F_{q^m} in higher dimensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $q = 2, m \ge 3$ *.*

Assymptotics: linearity in *m* can be obtained for symmetric decomposition in F_{q^m} in higher dimensions

• Corollary: $\mu_q^{\text{tri}}(m)$ is also **linear** in *m*

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $q = 2, m \ge 3$ *.*

Assymptotics: linearity in *m* can be obtained for symmetric decomposition in F_{q^m} in higher dimensions

• Corollary: $\mu_q^{\text{tri}}(m)$ is also **linear** in *m*

Small values: usual algorithms do not work

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $q = 2, m \ge 3$ *.*

Assymptotics: linearity in *m* can be obtained for symmetric decomposition in F_{q^m} in higher dimensions

• Corollary: $\mu_q^{\text{tri}}(m)$ is also **linear** in *m*

- Small values: usual algorithms do not work
 - We provide an *ad hoc* exhaustive search algorithm

CONCLUSION

Bilinear complexity:

- important notion in symbolic computation
- any bilinear map can be studied

CONCLUSION

Bilinear complexity:

- important notion in symbolic computation
- any bilinear map can be studied

Symmetric complexity:

• Generalization to the case of *t*-variable products, $t \ge 3$

CONCLUSION

Bilinear complexity:

- important notion in symbolic computation
- any bilinear map can be studied

Symmetric complexity:

• Generalization to the case of *t*-variable products, $t \ge 3$

Trisymmetric complexity:

- ▶ is **linear** in the extension degree
- small values can be found through exhaustive search

CONCLUSION

Bilinear complexity:

- important notion in symbolic computation
- any bilinear map can be studied

Symmetric complexity:

• Generalization to the case of *t*-variable products, $t \ge 3$

Trisymmetric complexity:

- ▶ is **linear** in the extension degree
- small values can be found through exhaustive search

Future work:

- distinguish μ_q^{tri} from μ_q^{sym} for $q \ge 3$
- find better bounds than those already known

CONCLUSION

Bilinear complexity:

- important notion in symbolic computation
- any bilinear map can be studied

Symmetric complexity:

• Generalization to the case of *t*-variable products, $t \ge 3$

Trisymmetric complexity:

- is **linear** in the extension degree
- small values can be found through exhaustive search

Future work:

- distinguish μ_q^{tri} from μ_q^{sym} for $q \ge 3$
- find better bounds than those already known

Thank you!