Motivation
[e]e]e]

Bilinear complexity
[e]e]e]

Symmetries
Q0000

Trisymmetric multiplication formulae in

finite fields

Hugues Randriambololona, Edouard Rousseau

UNIVERSITE DE N‘W

VERSAILLES w=s
ST-QUENTIN-EN-YVELINES

L]
universite pARrIs-sACLAY

July 4, 2020

I NNOYV

3k fledeFrance

TELECOM
ParisTech

o4 fii |




Motivation Bilinear complexity Symmetries

000 000 00000
:

MOTIVATION

» Computations in an algebra A

2/12



Motivation Bilinear complexity
[ Jele} [e]e]e]

Symmetries
00000

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @
» additions, scalar multiplications: cheap ©

2/12



Motivation Bilinear complexity
@00 000

Symmetries
Q0000

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @
» additions, scalar multiplications: cheap ©

> we want to study/reduce the cost of multiplication

2/12



Motivation Bilinear complexity Symmetries
[ Jele} [e]e]e] Q0000
:

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @
» additions, scalar multiplications: cheap ©

> we want to study/reduce the cost of multiplication
» Lot of litterature on the subject



Motivation Bilinear complexity Symmetries
[ Jele} [e]e]e] Q0000
:

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @

» additions, scalar multiplications: cheap ©
> we want to study/reduce the cost of multiplication
» Lot of litterature on the subject

» Karatsuba (1962)



Motivation Bilinear complexity Symmetries
[ Jele} [e]e]e] Q0000
:

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @

» additions, scalar multiplications: cheap ©
> we want to study/reduce the cost of multiplication
» Lot of litterature on the subject

» Karatsuba (1962)
» Toom-Cook (1963), evaluation-interpolation techniques



Motivation Bilinear complexity
[ Jele} [e]e]e]

Symmetries
Q0000

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @

» additions, scalar multiplications: cheap ©
> we want to study/reduce the cost of multiplication
» Lot of litterature on the subject

» Karatsuba (1962)
» Toom-Cook (1963), evaluation-interpolation techniques
» Schonhage-Strassen (1971)

N



Motivation Bilinear complexity Symmetries

@00 000 00000
:

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @

» additions, scalar multiplications: cheap ©
> we want to study/reduce the cost of multiplication
» Lot of litterature on the subject

» Karatsuba (1962)
» Toom-Cook (1963), evaluation-interpolation techniques

» Schonhage-Strassen (1971)
> ...



Motivation Bilinear complexity Symmetries
[ Jele} [e]e]e] Q0000
:

MOTIVATION

» Computations in an algebra A

> multiplications: expensive @

» additions, scalar multiplications: cheap ©
> we want to study/reduce the cost of multiplication
» Lot of litterature on the subject

» Karatsuba (1962)

» Toom-Cook (1963), evaluation-interpolation techniques
» Schonhage-Strassen (1971)

> ...

| 4

O(nlogn) algorithm [Harvey, Van Der Hoeven "19]



Motivation Bilinear complexity Symmetries
(o] le} [e]e]e] Q0000
:

BILINEAR COMPLEXITY: INTUITION

» A an algebra over K

» bilinear complexity: number of subproduct in K needed
to compute a product in A

Karatsuba:
(ao + 611X)(b0 + 171X) =

aobo + (aoby + arbo) X + a1by X2



Motivation Bilinear complexity Symmetries
000 000 00000
|

BILINEAR COMPLEXITY: INTUITION

» A an algebra over K

» bilinear complexity: number of subproduct in K needed
to compute a product in A

Karatsuba:
(a0 +a1X)(bo + 01 X) =

apby + (ﬂob] + a1q bo)X + [Zlb]X2

3/12



Motivation Bilinear complexity Symmetries
(o] le} [e]e]e] Q0000

BILINEAR COMPLEXITY: INTUITION

» A an algebra over K

» bilinear complexity: number of subproduct in K needed
to compute a product in A

Karatsuba:
(ao + 611X)(b0 + 171X) =

co + (c2 — c1 — co)X + 1 X

co = apby
g = mb

o = (ap+a1)(bo+b)

with



Motivation Bilinear complexity Symmetries
(o] le} [e]e]e] Q0000

BILINEAR COMPLEXITY: INTUITION

» A an algebra over K

» bilinear complexity: number of subproduct in K needed
to compute a product in A

Karatsuba:
(ao + 611X)(b0 + 171X) =

co + (C2 —C1 — Co)X + C]X2

co = apby
g = mb

o = (ap+a1)(bo+b)

with



Motivation Bilinear complexity Symmetries
(o] le} [e]e]e] Q0000
:

BILINEAR COMPLEXITY: INTUITION

» A an algebra over K

» bilinear complexity: number of subproduct in K needed
to compute a product in A

Karatsuba:
(Llo + 611X)(b0 + b1X) =

co + (02 —C1 — Co)X + C]}(2

co = apby
g = mb

o = (ap+a1)(bo+b)

with

> © Hard to compute the bilinear complexity of a product:
unkwown even for the 3 x 3 matrix product
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» What is the asymptotic comportment of y,(m)?
> 1i5(m) is linear in m
» Evaluation-interpolation techniques:

» [Chudnovsky-Chudnovsky "87]
» [Shparlinski-Tsfasman-Vladut "92]

» [Randriambololona "12]
>

» Can we find values p,(m) for small m?
» Clever exhaustive search [BDEZ "12] [Covanov "18]
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EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:
> P(X)=ap+mX,Q(X) =by+ X
Big news! Karatsuba is an evaluation-interpolation scheme!
(on the projective line P!)
> co = P(0)Q(0) = PQ(0) = aobo
> o =P(1)Q(1) = PQ(1) = (ap +a1)(bo + b1)
> 2 = Coo = P(00)Q(00) = PQ(c0) = a1b;
with R(c0) = leading coefficient of R

» When studying A = Fyn for m — oo, one needs many
points of evaluation

~ use a curve on I, with many points for evaluations

~
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SYMMETRIC DECOMPOSITIONS

» A commutative algebra

Classic decompositions | Symmetric decompositions

xy =3 (%) oy | yx = xy =30 9i(0)9i(y) - o

Notation: for A = F;n, we note ,uzym(m) the minimal length 7 in
a symmetric decomposition

> Assymptotics: ,uf,ym(m) is linear in m
» Small values: smaller search space ~ faster algorithms

8/12



Motivation Bilinear complexity Symmetries

000 000 O®000
:

EVEN MORE SYMMETRIC DECOMPOSITIONS

> A= qu
» every linear form ¢ can be written x — Tr(ax) for some
a € [Fym, with Tr the trace of IF g / F,

» we can rewrite the formula

xy =Y (X)) - B
j=1

9/12



Motivation Bilinear complexity Symmetries

000 000 O®000
:

EVEN MORE SYMMETRIC DECOMPOSITIONS

> A= qu
» every linear form ¢ can be written x — Tr(ax) for some
a € [Fym, with Tr the trace of IF g / F,

» we can rewrite the formula

Xy = Z Tr(ajx) Tr(ajy) - B;
j=1

9/12



Motivation Bilinear complexity Symmetries

000 000 O®000
:

EVEN MORE SYMMETRIC DECOMPOSITIONS

> A= qu
» every linear form ¢ can be written x — Tr(ax) for some
a € [Fym, with Tr the trace of IF g / F,

» we can rewrite the formula, and even ask Bi = Ajqy

xy = Z A Tr(ajx) Tr(ajy) - o
j=1

with A € Ty scalars

9/12



Motivation Bilinear complexity Symmetries
[e]e]e] [e]e]e] 0e000

EVEN MORE SYMMETRIC DECOMPOSITIONS

> A= qu
» every linear form ¢ can be written x — Tr(ax) for some
a € [Fym, with Tr the trace of IF g / F,

» we can rewrite the formula, and even ask Bi = Ajqy

xy = Z A Tr(ajx) Tr(ajy) - o;
j=1

with \; € Iy scalars
> we call these formulae trisymmetric decompositions

N



Motivation Bilinear complexity
[e]e]e] [e]e]e]

Symmetries

O®000

EVEN MORE SYMMETRIC DECOMPOSITIONS

> A= qu
» every linear form ¢ can be written x — Tr(ax) for some
a € [Fym, with Tr the trace of IF g / F,

» we can rewrite the formula, and even ask Bi = Ajqy

,
xy = Z A Tr(ajx) Tr(ajy) - o;
j=1
with \; € Iy scalars
> we call these formulae trisymmetric decompositions

> we note uffi(m) the minimal 7 in such formulae
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> A=TFyp 2Fsz]/(z2 —z—1) 2 F3(C)
> x,y €A x=x0+x¢andy =yo+yi¢

(x0 + x10) (o + y1€) = (xoyo + x1y1) + (Xoy1 + X1Y0 + X1¥1)C
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FTH(C DX D) xy) (D)
with
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Tr(¢x) Tr(Cy) = XoYo
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Link with other decompositions:

pg(m) < g™ (m) < i (m)
? ?

Proposition (Randriambololona, "14)

Tri-symmetric decompositions always exist, except for g = 2,m > 3.

» Assymptotics: linearity in m can be obtained for
symmetric decomposition in Fy» in higher dimensions

» Corollary: utqri(m) is also linear in m
» Small values: usual algorithms do not work
» We provide an ad hoc exhaustive search algorithm
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> distinguish ,ugri from ;"™ for g >3
» find better bounds than those already known
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