The mathematics of secrets

Édouard Rousseau

July 7, 2021 Mathematical Summer in Paris

What is cryptography?

CRYPTO-WHAT?

cryptography/cryptology comes from ancient Greek

- "crypto" means "secret", "hidden"
- "graphy" means "to write"
- "logy" means "study"
- the science of "secret writing"
- the study of secret codes

WHAT IS THE GOAL?

- two people (usually Alice and Bob) want to communicate
- a third person (Eve) can "hear" the communication

Goal: secure the communication

. . .

USES

- military communications (Caesar cipher, Enigma, ...)
- online payments
- secured websites
- encrypted chat apps (Whatsapp, Telegram, ...)

Figure: Enigma machine, used by Germany during WW2

CAESAR'S CIPHER

- used by Julius Caesar to write letters
- idea: shift all letters by a constant number *k*

Example: with k = 3, we have $A \rightarrow D$, $B \rightarrow E$, $C \rightarrow F$, ..., $Z \rightarrow C$

"Injustice anywhere is a threat to justice everywhere"

CAESAR'S CIPHER

- used by Julius Caesar to write letters
- idea: shift all letters by a constant number *k*

Example: with k = 3, we have $A \rightarrow D$, $B \rightarrow E$, $C \rightarrow F$, ..., $Z \rightarrow C$

"Injustice anywhere is a threat to justice everywhere" INJUSTICEANYWHEREISATHREATTOJUSTICEEVERYWHERE ↓ LOMXVWLFHDOBZKHUHLVDWKUHDWWRMXVWLFHHYHUBZKHUH

A bit of mathematics

More problems in cryptography 00000000

Asymmetric cryptography

SYMMETRIC CRYPTOGRAPHY

 In symmetric cryptography, participants share a secret/key prior to the communication

Secret

▶ In Caesar's cipher, the key is the number *k*

A bit of mathematics

More problems in cryptography 0000000

Asymmetric cryptography

SYMMETRIC CRYPTOGRAPHY

 In symmetric cryptography, participants share a secret/key prior to the communication

In Caesar's cipher, the key is the number k

Asymmetric cryptography

SYMMETRIC CRYPTOGRAPHY

 In symmetric cryptography, participants share a secret/key prior to the communication

▶ In Caesar's cipher, the key is the number *k*

DECRYPTION

• If we know k = 3, decrypting the message is easy

LQMXVWLFHDQBZKHUHLVDWKUHDWWRMXVWLFHHYHUBZKHUH ↓ INJUSTICEANYWHEREISATHREATTOJUSTICEEVERYWHERE

AND WHITHOUT THE KEY?

- without the key, it becomes harder
- we have to try all keys...

KYZJFEVJYFLCUEFKSVJFVRJP

- ▶ $k = 1 \rightsquigarrow$ JXYIEDUIXEKBTDEJRUIEUQIO 🙁
- ▶ $k=2 \rightsquigarrow$ IWXHDCTHWDJASCDIQTHDTPHN ③
- ▶ ...
- ▶ $k = 17 \rightsquigarrow$ Thisoneshouldnotbesoeasy \odot

A bit of mathematics

CRYPTOGRAPHY AND MATHEMATICS

- Mathematics is a great tool to represent cryptosystems!
- ► Caesar's cipher: A = 0, B = 1, C = 2, ..., Z = 25
 - Encryption of the letter x is then represented by a simple addition x + k
 - Decryption of *y* is the substration y k
- But shifting Z = 25 by k = 1 should give A = 0
 - ▶ 25 + 1 = 0?
 - Yes! Use modular integers!

A bit of mathematics

More problems in cryptography 00000000

Asymmetric cryptography

Let's define that structure properly!

DIVISIONS IN \mathbb{Z}

Definition (Divisibility)

Let $a, b \in \mathbb{Z}$ be two integers. We say that a **divides** b when there exists $c \in \mathbb{Z}$ such that

$$b = a \times c.$$

We also note $a \mid b$.

Example

- $3 \mid 12 \text{ since } 12 = 3 \times 4$
- ▶ $-2 \mid 6 \text{ since } (-2)(-3) = 6$
- $42 \mid 0 \text{ since } 0 = 42 \times 0$

EUCLIDEAN DIVISION

Definition (Euclidean division)

Let $a, b \in \mathbb{Z}$ be two integers, with $b \ge 1$, then there exist unique integers $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ such that

$$a = bq + r$$

and $0 \le r < b$. The integer *q* is called the **quotient** of the euclidean division of *a* by *b*, while *r* is called the **remainder**. We also write $a = r \mod b$.

Example

- ▶ $17 = 5 \times 3 + 2$ thus $17 = 2 \mod 5$
- ▶ $39 = 14 \times 2 + 11$ thus $39 = 11 \mod 14$
- ▶ $18 = 3 \times 6 + 0$ thus $18 = 0 \mod 3$

CONGRUENCES

Definition (Congruence)

If $a, b \in \mathbb{Z}$ are integers, then a is said to be **congruent** to b **modulo** n if

$$a = b \mod n$$
.

The integer *n* is called the **modulus** of the congruence.

Proposition

a = b mod n ⇔ n | (a - b)
if a = b mod n then b = a mod n
if a = b mod n and b = c mod n then a = c mod n
if a = c mod n and b = d mod n then a + b = c + d mod n
if a = c mod n and b = d mod n then a × b = c × d mod n

DEFINITION OF $\mathbb{Z}/n\mathbb{Z}$

Definition (Equivalence class)

The **equivalence class** of an integer $a \in \mathbb{Z}$ is the set of all integers congruent to *a* modulo *n*.

Definition (Integers modulo *n*)

The **integers modulo** *n*, denoted $\mathbb{Z}/n\mathbb{Z}$ (sometimes also \mathbb{Z}_n) is the set of (equivalence classes of) integers $\{0, 1, ..., n - 1\}$. Addition, substraction and multiplication in $\mathbb{Z}/n\mathbb{Z}$ are performed modulo *n*.

Example

- In $\mathbb{Z}/3\mathbb{Z}$, we have 2 + 2 = 1, because $2 + 2 = 4 = 1 \mod 3$.
- In $\mathbb{Z}/6\mathbb{Z}$, we have $2 \times 3 = 0$, because $6 = 0 \mod 6$.

REPRESENTING CAESAR'S CIPHER

- ► We represent the letters of our message by elements in ℤ/26ℤ
- Encryption is only addition by *k* modulo 26
- Decryption is substration by k modulo 26

A bit of mathematics

More problems in cryptography 00000000

Asymmetric cryptography

CAESAR'S CIPHER IN $\mathbb{Z}/26\mathbb{Z}$ with k = 3

INVERTIBLE ELEMENTS IN $\mathbb{Z}/n\mathbb{Z}$

Definition (Invertible elements)

An element *x* in $\mathbb{Z}/n\mathbb{Z}$ is called **invertible** when there exists an element $y \in \mathbb{Z}/n\mathbb{Z}$ such that

$$x \times y = 1.$$

The element *y* is called the **inverse** of *x* and is denoted by x^{-1} . The **set of invertible elements** of $\mathbb{Z}/n\mathbb{Z}$ is denoted $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Example

- In ℤ/10ℤ, we have 3 × 7 = 21 = 1 thus 3 and 7 are invertible, and 3⁻¹ = 7.
- We have $(\mathbb{Z}/10\mathbb{Z})^{\times} = \{1, 3, 7, 9\}.$

Algebraic structure of $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Definition

The set $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is called a **cyclic group** if it is generated by the powers of one element $g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. The element *g* is called a **generator**.

Example

- Remember $(\mathbb{Z}/10\mathbb{Z})^{\times} = \{1, 3, 7, 9\}$
- ► $3^0 = 1$
- ► $3^1 = 3$
- ► $3^2 = 9$
- ► $3^3 = 27 = 7$
- ► $3^4 = 81 = 1$

Figure: The set $\mathbb{Z}/10\mathbb{Z}$ and its invertible elements forming a cyclic group.

Some important results

Proposition

Let $x \in \mathbb{Z}/n\mathbb{Z}$. Then x is invertible (i.e. $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$) if and only if gcd(x, n) = 1.

Example

3 ∈ (ℤ/10ℤ)[×]
 7 ∈ (ℤ/32ℤ)[×]
 4 ∈ (ℤ/15ℤ)[×]

Theorem

The set of invertible elements $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a cyclic group if and only if *n* is 1, 2, 4, p^k or $2p^k$ with *p* an odd prime and k > 0.

More problems in cryptography

SYMMETRIC CRYPTOGRAPHY

Caesar's cipher belongs to symmetric cryptography

Alice and Bob both know the secret key

This key allows both to encrypt and decrypt

Problem: Alice and Bob have to exchange their key **before** the communication

How can they make the exchange secure?

- ► They could meet in person ~ not practical
- ▶ Or use symmetric cryptography ~→ need a key again

More problems in cryptography 0000000

Asymmetric cryptography

DIFFIE AND HELLMAN

In 1976, Whitfield Diffie and Martin Hellman published a (now famous) article "New Directions in Cryptography"

Figure: Whitfield Diffie (left) and Martin Hellman (right)

> They proposed a solution for managing **key exchange**!

Alice and Bob agree on this **public information**:

- a prime number p
- a generator *g* of $(\mathbb{Z}/p\mathbb{Z})^{\times}$

Alice and Bob agree on this **public information**:

- ▶ a prime number *p*
- a generator g of $(\mathbb{Z}/p\mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number *a* with $2 \le a \le p 2$
- ▶ Bob chooses a number *b* with $2 \le b \le p 2$

Alice and Bob agree on this **public information**:

- ▶ a prime number *p*
- a generator g of $(\mathbb{Z}/p\mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number *a* with $2 \le a \le p 2$
- ▶ Bob chooses a number *b* with $2 \le b \le p 2$

Then

• Alice computes $A = g^a$ and sends it to Bob

Alice and Bob agree on this **public information**:

- ▶ a prime number *p*
- a generator g of $(\mathbb{Z}/p\mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number *a* with $2 \le a \le p 2$
- ▶ Bob chooses a number *b* with $2 \le b \le p 2$

Then

- Alice computes $A = g^a$ and sends it to Bob
- Bob computes $B = g^b$ and sends it to Alice

Alice and Bob agree on this **public information**:

- ▶ a prime number *p*
- a generator g of $(\mathbb{Z}/p\mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number *a* with $2 \le a \le p 2$
- ▶ Bob chooses a number *b* with $2 \le b \le p 2$

Then

- Alice computes $A = g^a$ and sends it to Bob
- Bob computes $B = g^b$ and sends it to Alice

• Alice computes
$$B^a = (g^b)^a = g^{ab}$$

Alice and Bob agree on this **public information**:

- a prime number p
- a generator g of $(\mathbb{Z}/p\mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number *a* with $2 \le a \le p 2$
- ▶ Bob chooses a number *b* with $2 \le b \le p 2$

Then

- Alice computes $A = g^a$ and sends it to Bob
- Bob computes $B = g^b$ and sends it to Alice
- Alice computes $B^a = (g^b)^a = g^{ab}$
- Bob computes $A^b = (g^a)^b = g^{ab}$

Alice and Bob agree on this **public information**:

- ▶ a prime number *p*
- a generator g of $(\mathbb{Z}/p\mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number *a* with $2 \le a \le p 2$
- ▶ Bob chooses a number *b* with $2 \le b \le p 2$

Then

- Alice computes $A = g^a$ and sends it to Bob
- Bob computes $B = g^b$ and sends it to Alice
- Alice computes $B^a = (g^b)^a = g^{ab}$
- Bob computes $A^b = (g^a)^b = g^{ab}$

Now they share the secret key g^{ab} !

More problems in cryptography 00000000

Asymmetric cryptography

SMALL EXAMPLE

Public information: p = 23 and g = 5

More problems in cryptography 00000000

Asymmetric cryptography

SMALL EXAMPLE

Public information: p = 23 and g = 5

Chooses
$$a = 4$$

Chooses b = 3

Asymmetric cryptography

SMALL EXAMPLE

Public information: p = 23 and g = 5

Chooses a = 4 Chooses b = 3

Asymmetric cryptography

SMALL EXAMPLE

Public information: p = 23 and g = 5

Chooses a = 4 Chooses b = 3

Computes $s = B^a = 10^4 = 18$ Computes $s = A^b = 4^3 = 18$

Asymmetric cryptography

SMALL EXAMPLE

Public information: p = 23 and g = 5

Chooses a = 4 Chooses b = 3

Computes $s = B^a = 10^4 = 18$ Computes $s = A^b = 4^3 = 18$

They now share the secret s = 18!

IS IS SECURE?

- In the Diffie-Hellman key exchange protocol, an adversary knows g, g^a and g^b and wants to know s = g^{ab}.
- If the adversary knows one the secret value *a* or *b*, he can recover *s*

Discrete logarithm problem: it is hard to recover x from the data of g and g^x .

- We do not know any efficient technique (except in particular rare cases) to solve the discrete logarithm problem
- There is still research on the discrete logarithm problem!

STILL, CAN'T WE GUESS?

- For p = 23, we can find x from g^x by computing all the powers of g by hand
- ▶ But for *p* = 1031, *g* = 615, and *g*^{*x*} = 599, would you do it?
 - A computer finds x in a few ms
- ▶ For *p* = 1048583, a computer finds *x* in 0.5 s
- ▶ For *p* = 1073741827, it takes 9 minutes
- For *p* very big, even a supercomputer cannot find *x* in a reasonable time

CONCLUSION ON DIFFIE-HELLMAN

- In order to use symmetric cryptography, Alice and Bob need a common secret key
- Diffie-Hellman protocol allows them to exchange a key on a public communication channel
- Anyone can listen to the information they exchange, but nobody can recover the key

Asymmetric cryptography

ASYMMETRIC CRYPTOGRAPHY

- Diffie and Hellman introduced a brilliant idea that enables the use of symmetric cryptography
 - In the Diffie-Hellman protocol, Alice and Bob still have symmetric roles
- In fact, it is possible to encrypt messages without the need to exchange a secret key!
 - Thanks to asymmetric cryptography!

PUBLIC-KEY ENCRYPTION

- In asymmetric cryptography, the roles of Alice and Bob are not the same anymore
- There are two kinds of keys
 - public keys used to encrypt
 - private keys used to decrypt
- Alice creates a **pair** of keys: a **private** one and a **public** one
- If Bob wants to send a message to Alice, he can use her public key to encrypt his message
- Alice can then use her private key to decrypt the message

Bob

Message

Alice

Asymmetric cryptography 000000000000000000000000000000000000

What is cryptography?	A bit of mathematics 000000000000	More problems in cryptography 00000000	Asymmetric cryptography

A bit of mathematics	More problems in cryptography 00000000	Asymmetric cryptography

Before presenting an asymmetric encryption cryptosystem, we need a little bit of mathematics again.

Definition (Euler's totient function)

We let $\varphi(n)$ be the number of positive integers up to *n* that are coprime with *n*, *i.e.* the numbers *x* such that gcd(x, n) = 1. The function φ is called **Euler's totient function**.

Example

$$\begin{split} \varphi(10) &= 4 \\ \bullet \ \gcd(1, 10) = \gcd(3, 10) = \gcd(7, 10) = \gcd(9, 10) = 1 \\ \bullet \ \gcd(2, 10) = \gcd(4, 10) = \gcd(6, 10) = \gcd(8, 10) = 2 \\ \bullet \ \gcd(5, 10) = 5 \\ \bullet \ \gcd(0, 10) = \gcd(10, 10) = 10 \\ \bullet \ \varphi(7) &= 6 \\ \bullet \ \varphi(35) = 24 \end{split}$$

Properties of φ

Proposition

Let $n \ge 2$ *be an integer. Then the set* $(\mathbb{Z}/n\mathbb{Z})^{\times}$ *has exactly* $\varphi(n)$ *elements.*

Proof.

We said that $x \in (\mathbb{Z}/n\mathbb{Z})^{\times} \iff \gcd(x, n) = 1$ and the function φ counts the number of elements x such that $\gcd(x, n) = 1$.

Proposition

The function φ *is multiplicative: i.e. if* gcd(x, y) = 1*, then* $\varphi(xy) = \varphi(x)\varphi(y)$ *.*

Example

$$\blacktriangleright \ \varphi(35) = \varphi(5 \times 7) = \varphi(5)\varphi(7) = 4 \times 6 = 24$$

FERMAT AND EULER

Theorem (Fermat's little theorem)

If p is a prime number and x is a positive integer that is coprime with p (i.e. gcd(a, p) = 1*), then we have*

 $x^{p-1} = 1 \mod p.$

Theorem (Euler's theorem)

If x and n are coprime positive integers, then we have

$$x^{\varphi(n)} = 1 \mod n.$$

Euler's theorem is a **direct generalization** of Fermat's little theorem, because $\varphi(p) = p - 1$

RIVEST, SHAMIR AND ADLEMAN

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman were the first to describe an asymmetric encryption cryptosystem called RSA.

Figure: Ron Rivest (left), Adi Shamir, and Leonard Adleman (right)

THE RSA CRYPTOSYSTEM

Still widely used today

• works in $\mathbb{Z}/n\mathbb{Z}$, with n = pq product of two primes

► $\varphi(n) = (p-1)(q-1)$

- ▶ Alice chooses an integer $e \in \mathbb{N}$ such that $gcd(e, \varphi(n)) = 1$
 - The pair (e, n) is her public key
- Alice computes an integer *d* ∈ N such that *e* × *d* = 1 mod φ(*n*)
 - The pair $(d, \varphi(n))$ is her private key

ENCRYPTION AND DECRYPTION

• Encryption of a message *x* is done via

 $E(x) = x^e \mod n$

Decryption of a encrypted message y is done via

 $D(y) = y^d \mod n$

Proposition

The RSA cryptosystem works: for any message $x \in \mathbb{Z}/n\mathbb{Z}$ *, we have* $D(E(x)) = (x^e)^d = x^{ed} = x \mod n$.

Proof.

By Euler's theorem, we have $x^{\varphi(n)} = 1 \mod n$. We also have $ed = 1 \mod \varphi(n)$, hence there exists $k \in \mathbb{Z}$ with $ed = 1 + k\varphi(n)$. Thus $x^{ed} = x^{1+k\varphi(n)} = x \mod n$.

More problems in cryptography 0000000

RSA TOY EXAMPLE

Wants to send x = 7

More problems in cryptography 00000000

RSA TOY EXAMPLE

Public key: (3, 15)Chooses (p,q) = (3,5)Computes $\varphi(n) = 8$ Chooses e = 3

Computes d = 3

Wants to send x = 7

More problems in cryptography 00000000

RSA TOY EXAMPLE

More problems in cryptography 00000000

RSA TOY EXAMPLE

Public key: (3, 15)Chooses (p, q) = (3, 5)Computes $\varphi(n) = 8$ Wants to send x = 7Chooses e = 3Computes and sends $7^3 = 13 \mod 15$ Computes d = 3Computes $13^3 = 7 \mod 15$

More problems in cryptography 0000000

Asymmetric cryptography

RSA TOY EXAMPLE II

Wants to send x = 42

More problems in cryptography 00000000

RSA TOY EXAMPLE II

Public key: (13,77) Chooses (p,q) = (7,11)Computes $\varphi(n) = 60$ Chooses e = 13

Wants to send x = 42

Computes d = 37

RSA TOY EXAMPLE II

Public key: (13, 77) Chooses (p, q) = (7, 11)Computes $\varphi(n) = 60$ Wants to send x = 42Chooses e = 13• Computes and sends $42^{13} = 14 \mod 77$ Computes d = 37

RSA TOY EXAMPLE II

Public key: (13,77) Chooses (p, q) = (7, 11)Computes $\varphi(n) = 60$ Wants to send x = 42Chooses e = 13Computes and sends $42^{13} = 14 \mod 77$ Computes d = 37Computes $14^{37} = 42 \mod 77$

RSA SECURITY

The best technique that we know to break the RSA cryptosystem is to find the factorization

$$n = pq$$

- Knowing *p* and *q*, we can recover $\varphi(n)$
- With $\varphi(n)$, we can recover *d*
- Factorization is believed to be really hard in practice, for large *p* and *q*

Open questions:

- We do not know if factorization is the best way to break the RSA cryptosystem
- We do not know if factorization is hard

ONE-WAY FUNCTIONS

Definition

A function $f : X \to Y$ is called **one-way** if f(x) is easy to compute for all $x \in X$, but for essentially all elements $y \in Y$, it is hard to find any $x \in X$ such that f(x) = y.

Example

Let us take the function $f : \mathbb{Z}/17\mathbb{Z} \to \mathbb{Z}/17\mathbb{Z}$ such that $f(x) = 3^x$.

x																
f(x)	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

TRAPDOOR ONE-WAY FUNCTIONS

Definition

A **trapdoor one-way** function is a one-way function $f : X \to Y$ with the additional property that given some extra information (called **trapdoor information**) it becomes easy to find a preimage for any given $y \in Y$, *i.e.* to find $x \in X$ with f(x) = y.

Example

If n = pq and e is an integer such that $gcd(e, \varphi(n)) = 1$ then the map $f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ given by $f(x) = x^e$ is a trapdoor one-way function! The trapdoor information is the factorization of n.

CONCLUSION

- One-way functions and trapdoor one-way functions are the basis for asymmetric cryptography
- It is unknown if there are "truly" one-way functions
 - often we cannot prove that a problem is "difficult"
 - the discrete logarithm problem and the factorization problem are two examples of such difficult problems
- There are still a lot of open questions in (asymmetric) cryptography
- Modular arithmetic (Z/nZ) gives challenging problems in cryptography, while being simple

THERE IS MORE TO DISCOVER!

There are many other applications of cryptography

- digital signatures
- authentication
- homomorphic encryption
- ▶ ...
- based on many other mathematical objects
 - finite fields
 - elliptic curves
 - isogenies
 - lattices
 - systems of multivariate equations
 - . . .