# The mathematics of secrets 

Édouard Rousseau

July 7, 2021<br>Mathematical Summer in Paris



## What is cryptography?

## CRYPTO-WHAT?

- cryptography / cryptology comes from ancient Greek
- "crypto" means "secret", "hidden"
- "graphy" means "to write"
- "logy" means "study"
- the science of "secret writing"
- the study of secret codes


## What is the goal?

- two people (usually Alice and Bob) want to communicate
- a third person (Eve) can "hear" the communication


Goal: secure the communication

## Uses

- military communications (Caesar cipher, Enigma, ...)
- online payments
- secured websites
- encrypted chat apps (Whatsapp, Telegram, ...)


Figure: Enigma machine, used by Germany during WW2

## CAESAR'S CIPHER

- used by Julius Caesar to write letters
- idea: shift all letters by a constant number $k$

Example: with $k=3$, we have $\mathrm{A} \rightarrow \mathrm{D}, \mathrm{B} \rightarrow \mathrm{E}, \mathrm{C} \rightarrow \mathrm{F}, \ldots, \mathrm{Z} \rightarrow \mathrm{C}$
"Injustice anywhere is a threat to justice everywhere"

## CAESAR'S CIPHER

- used by Julius Caesar to write letters
- idea: shift all letters by a constant number $k$

Example: with $k=3$, we have $\mathrm{A} \rightarrow \mathrm{D}, \mathrm{B} \rightarrow \mathrm{E}, \mathrm{C} \rightarrow \mathrm{F}, \ldots, \mathrm{Z} \rightarrow \mathrm{C}$
"Injustice anywhere is a threat to justice everywhere"
INJUSTICEANYWHEREISATHREATTOJUSTICEEVERYWHERE

LQMXVWLFHDQBZKHUHLVDWKUHDWWRMXVWLFHHYHUBZKHUH


## SYMMETRIC CRYPTOGRAPHY

- In symmetric cryptography, participants share a secret/key prior to the communication



## Secret



- In Caesar's cipher, the key is the number $k$


## SYMMETRIC CRYPTOGRAPHY

- In symmetric cryptography, participants share a secret/key prior to the communication


Encryption Secret

Message $\longrightarrow$ Encrypted message


- In Caesar's cipher, the key is the number $k$


## SYMMETRIC CRYPTOGRAPHY

- In symmetric cryptography, participants share a secret/key prior to the communication


Encryption Secret Decryption

Encrypted message

a

- In Caesar's cipher, the key is the number $k$


## DECRYPTION

- If we know $k=3$, decrypting the message is easy

LQMXVWLFHDQBZKHUHLVDWKUHDWWRMXVWLF HHYHUBZKHUH $\downarrow$
INJUSTICEANYWHEREISATHREATTOJUSTICEEVERYWHERE

## AND WHITHOUT THE KEY?

- without the key, it becomes harder
- we have to try all keys...
KYZJFEVJYFLCUEFKSVJFVRJP
- $k=1 \sim$ JXYIEDUIXEKBTDEJRUIEUQIO $\mathcal{B}$
- $k=2 \sim$ IWXHDCTHWDJASCDIQTHDTPHN *)
- $k=17 \sim$ THISONESHOULDNOTBESOEASY ©


## A bit of mathematics

## CRyPTOGRAPHY AND MATHEMATICS

- Mathematics is a great tool to represent cryptosystems!
- Caesar's cipher: $A=0, B=1, C=2, \ldots, Z=25$
- Encryption of the letter $x$ is then represented by a simple addition $x+k$
- Decryption of $y$ is the substration $y-k$
- But shifting $\mathrm{Z}=25$ by $k=1$ should give $\mathrm{A}=0$
- $25+1=0$ ?
- Yes! Use modular integers!


## $\mathbb{Z} / 26 \mathbb{Z}$



- Let's define that structure properly!


## Divisions in $\mathbb{Z}$

## Definition (Divisibility)

Let $a, b \in \mathbb{Z}$ be two integers. We say that $a$ divides $b$ when there exists $c \in \mathbb{Z}$ such that

$$
b=a \times c
$$

We also note $a \mid b$.
Example

- $3 \mid 12$ since $12=3 \times 4$
- $-2 \mid 6$ since $(-2)(-3)=6$
- $42 \mid 0$ since $0=42 \times 0$


## Euclidean division

## Definition (Euclidean division)

Let $a, b \in \mathbb{Z}$ be two integers, with $b \geq 1$, then there exist unique integers $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ such that

$$
a=b q+r
$$

and $0 \leq r<b$. The integer $q$ is called the quotient of the euclidean division of $a$ by $b$, while $r$ is called the remainder. We also write $a=r \bmod b$.

Example

- $17=5 \times 3+2$ thus $17=2 \bmod 5$
- $39=14 \times 2+11$ thus $39=11 \bmod 14$
- $18=3 \times 6+0$ thus $18=0 \bmod 3$


## CONGRUENCES

## Definition (Congruence)

If $a, b \in \mathbb{Z}$ are integers, then $a$ is said to be congruent to $b$ modulo $n$ if

$$
a=b \quad \bmod n .
$$

The integer $n$ is called the modulus of the congruence.
Proposition

- $a=b \bmod n \Longleftrightarrow n \mid(a-b)$
- if $a=b \bmod n$ then $b=a \bmod n$
- if $a=b \bmod n$ and $b=c \bmod n$ then $a=c \bmod n$
- if $a=c \bmod n$ and $b=d \bmod n$ then $a+b=c+d \bmod n$
- if $a=c \bmod n$ and $b=d \bmod n$ then $a \times b=c \times d \bmod n$


## DEFINITION OF $\mathbb{Z} / n \mathbb{Z}$

Definition (Equivalence class)
The equivalence class of an integer $a \in \mathbb{Z}$ is the set of all integers congruent to $a$ modulo $n$.

Definition (Integers modulo $n$ )
The integers modulo $n$, denoted $\mathbb{Z} / n \mathbb{Z}$ (sometimes also $\mathbb{Z}_{n}$ ) is the set of (equivalence classes of) integers $\{0,1, \ldots, n-1\}$. Addition, substraction and multiplication in $\mathbb{Z} / n \mathbb{Z}$ are performed modulo $n$.

## Example

- In $\mathbb{Z} / 3 \mathbb{Z}$, we have $2+2=1$, because $2+2=4=1 \bmod 3$.
- In $\mathbb{Z} / 6 \mathbb{Z}$, we have $2 \times 3=0$, because $6=0 \bmod 6$.


## Representing CaEsAr's CIPHER

- We represent the letters of our message by elements in $\mathbb{Z} / 26 \mathbb{Z}$
- Encryption is only addition by $k$ modulo 26
- Decryption is substration by $k$ modulo 26


## CAESAR'S CIPHER IN $\mathbb{Z} / 26 \mathbb{Z}$ WITH $k=3$



## Invertible elements in $\mathbb{Z} / n \mathbb{Z}$

Definition (Invertible elements)
An element $x$ in $\mathbb{Z} / n \mathbb{Z}$ is called invertible when there exists an element $y \in \mathbb{Z} / n \mathbb{Z}$ such that

$$
x \times y=1
$$

The element $y$ is called the inverse of $x$ and is denoted by $x^{-1}$. The set of invertible elements of $\mathbb{Z} / n \mathbb{Z}$ is denoted $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Example

- In $\mathbb{Z} / 10 \mathbb{Z}$, we have $3 \times 7=21=1$ thus 3 and 7 are invertible, and $3^{-1}=7$.
- We have $(\mathbb{Z} / 10 \mathbb{Z})^{\times}=\{1,3,7,9\}$.


## ALGEBRAIC STRUCTURE OF $(\mathbb{Z} / n \mathbb{Z})^{\times}$

Definition
The set $(\mathbb{Z} / n \mathbb{Z})^{\times}$is called a cyclic group if it is generated by the powers of one element $g \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. The element $g$ is called a generator.

Example

- Remember $(\mathbb{Z} / 10 \mathbb{Z})^{\times}=\{1,3,7,9\}$
- $3^{0}=1$
- $3^{1}=3$
- $3^{2}=9$
- $3^{3}=27=7$
- $3^{4}=81=1$


Figure: The set $\mathbb{Z} / 10 \mathbb{Z}$ and its invertible elements forming a cyclic group.

## SOME IMPORTANT RESULTS

## Proposition

Let $x \in \mathbb{Z} / n \mathbb{Z}$. Then $x$ is invertible (i.e. $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$) if and only if $\operatorname{gcd}(x, n)=1$.

Example

- $3 \in(\mathbb{Z} / 10 \mathbb{Z})^{\times}$
- $7 \in(\mathbb{Z} / 32 \mathbb{Z})^{\times}$
- $4 \in(\mathbb{Z} / 15 \mathbb{Z})^{\times}$


## Theorem

The set of invertible elements $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a cyclic group if and only if $n$ is $1,2,4, p^{k}$ or $2 p^{k}$ with $p$ an odd prime and $k>0$.

## More problems in cryptography

## SYMMETRIC CRYPTOGRAPHY

- Caesar's cipher belongs to symmetric cryptography
- Alice and Bob both know the secret key 0 m
- This key allows both to encrypt and decrypt

Problem: Alice and Bob have to exchange their key before the communication

- How can they make the exchange secure?
- They could meet in person $\leadsto$ not practical
- Or use symmetric cryptography $\leadsto$ need a key again


## Diffie and Hellman

- In 1976, Whitfield Diffie and Martin Hellman published a (now famous) article "New Directions in Cryptography"


Figure: Whitfield Diffie (left) and Martin Hellman (right)

- They proposed a solution for managing key exchange!


## DIffie-HELLMAN KEY EXCHANGE

Alice and Bob agree on this public information:

- a prime number $p$
- a generator $g$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$


## Diffie-Hellman Key exchange

Alice and Bob agree on this public information:

- a prime number $p$
- a generator $g$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number $a$ with $2 \leq a \leq p-2$
- Bob chooses a number $b$ with $2 \leq b \leq p-2$


## Diffie-Hellman Key exchange

Alice and Bob agree on this public information:

- a prime number $p$
- a generator $g$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number $a$ with $2 \leq a \leq p-2$
- Bob chooses a number $b$ with $2 \leq b \leq p-2$

Then

- Alice computes $A=g^{a}$ and sends it to Bob


## Diffie-Hellman Key exchange

Alice and Bob agree on this public information:

- a prime number $p$
- a generator $g$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number $a$ with $2 \leq a \leq p-2$
- Bob chooses a number $b$ with $2 \leq b \leq p-2$

Then

- Alice computes $A=g^{a}$ and sends it to Bob
- Bob computes $B=g^{b}$ and sends it to Alice


## Diffie-Hellman Key exchange

Alice and Bob agree on this public information:

- a prime number $p$
- a generator $g$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number $a$ with $2 \leq a \leq p-2$
- Bob chooses a number $b$ with $2 \leq b \leq p-2$

Then

- Alice computes $A=g^{a}$ and sends it to Bob
- Bob computes $B=g^{b}$ and sends it to Alice
- Alice computes $B^{a}=\left(g^{b}\right)^{a}=g^{a b}$


## Diffie-Hellman Key exchange

Alice and Bob agree on this public information:

- a prime number $p$
- a generator $g$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number $a$ with $2 \leq a \leq p-2$
- Bob chooses a number $b$ with $2 \leq b \leq p-2$

Then

- Alice computes $A=g^{a}$ and sends it to Bob
- Bob computes $B=g^{b}$ and sends it to Alice
- Alice computes $B^{a}=\left(g^{b}\right)^{a}=g^{a b}$
- Bob computes $A^{b}=\left(g^{a}\right)^{b}=g^{a b}$


## Diffie-Hellman Key exchange

Alice and Bob agree on this public information:

- a prime number $p$
- a generator $g$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$

Then they choose integers that they keep secret

- Alice chooses a number $a$ with $2 \leq a \leq p-2$
- Bob chooses a number $b$ with $2 \leq b \leq p-2$

Then

- Alice computes $A=g^{a}$ and sends it to Bob
- Bob computes $B=g^{b}$ and sends it to Alice
- Alice computes $B^{a}=\left(g^{b}\right)^{a}=g^{a b}$
- Bob computes $A^{b}=\left(g^{a}\right)^{b}=g^{a b}$

Now they share the secret key $g^{a b}$ !

## Small EXAMPLE

Public information: $p=23$ and $g=5$


## Small EXAMPLE

Public information: $p=23$ and $g=5$


Chooses $a=4$
Chooses $b=3$

## Small example

Public information: $p=23$ and $g=5$


Chooses $a=4$
Chooses $b=3$

## Small EXAMPLE

Public information: $p=23$ and $g=5$


Chooses $a=4$
Chooses $b=3$

Computes $s=B^{a}=10^{4}=18$
Computes $s=A^{b}=4^{3}=18$

## SmALL EXAMPLE

Public information: $p=23$ and $g=5$


Chooses $a=4$
Chooses $b=3$
Computes $s=B^{a}=10^{4}=18 \quad$ Computes $s=A^{b}=4^{3}=18$

They now share the secret $s=18$ !

## IS IS SECURE?

- In the Diffie-Hellman key exchange protocol, an adversary knows $g, g^{a}$ and $g^{b}$ and wants to know $s=g^{a b}$.
- If the adversary knows one the secret value $a$ or $b$, he can recover $s$
Discrete logarithm problem: it is hard to recover $x$ from the data of $g$ and $g^{x}$.
- We do not know any efficient technique (except in particular rare cases) to solve the discrete logarithm problem
- There is still research on the discrete logarithm problem!


## Still, CAN'T WE GUESS?

- For $p=23$, we can find $x$ from $g^{x}$ by computing all the powers of $g$ by hand
- But for $p=1031, g=615$, and $g^{x}=599$, would you do it?
- A computer finds $x$ in a few ms
- For $p=1048583$, a computer finds $x$ in 0.5 s
- For $p=1073741827$, it takes 9 minutes
- For $p$ very big, even a supercomputer cannot find $x$ in a reasonable time


## Conclusion on Diffie-Hellman

- In order to use symmetric cryptography, Alice and Bob need a common secret key
- Diffie-Hellman protocol allows them to exchange a key on a public communication channel
- Anyone can listen to the information they exchange, but nobody can recover the key


## Asymmetric cryptography

## ASYMMETRIC CRYPTOGRAPHY

- Diffie and Hellman introduced a brilliant idea that enables the use of symmetric cryptography
- In the Diffie-Hellman protocol, Alice and Bob still have symmetric roles
- In fact, it is possible to encrypt messages without the need to exchange a secret key!
- Thanks to asymmetric cryptography!


## PUBLIC-KEY ENCRYPTION

- In asymmetric cryptography, the roles of Alice and Bob are not the same anymore
- There are two kinds of keys
- public keys used to encrypt
- private keys used to decrypt
- Alice creates a pair of keys: a private one and a public one
- If Bob wants to send a message to Alice, he can use her public key to encrypt his message
- Alice can then use her private key to decrypt the message

Bob

Message

# Public key Private key Creates Public key Private key <br>  <br> Alice 

Bob

Message




- Before presenting an asymmetric encryption cryptosystem, we need a little bit of mathematics again.


## Definition (Euler's totient function)

We let $\varphi(n)$ be the number of positive integers up to $n$ that are coprime with $n$, i.e. the numbers $x \operatorname{such}$ that $\operatorname{gcd}(x, n)=1$. The function $\varphi$ is called Euler's totient function.

Example

- $\varphi(10)=4$
- $\operatorname{gcd}(1,10)=\operatorname{gcd}(3,10)=\operatorname{gcd}(7,10)=\operatorname{gcd}(9,10)=1$
- $\operatorname{gcd}(2,10)=\operatorname{gcd}(4,10)=\operatorname{gcd}(6,10)=\operatorname{gcd}(8,10)=2$
- $\operatorname{gcd}(5,10)=5$
- $\operatorname{gcd}(0,10)=\operatorname{gcd}(10,10)=10$
- $\varphi(7)=6$
- $\varphi(35)=24$


## Properties of $\varphi$

## Proposition

Let $n \geq 2$ be an integer. Then the set $(\mathbb{Z} / n \mathbb{Z})^{\times}$has exactly $\varphi(n)$ elements.

Proof.
We said that $x \in(\mathbb{Z} / n \mathbb{Z})^{\times} \Longleftrightarrow \operatorname{gcd}(x, n)=1$ and the function $\varphi$ counts the number of elements $x$ such that $\operatorname{gcd}(x, n)=1$.

## Proposition

The function $\varphi$ is multiplicative: i.e. if $\operatorname{gcd}(x, y)=1$, then
$\varphi(x y)=\varphi(x) \varphi(y)$.
Example

- $\varphi(35)=\varphi(5 \times 7)=\varphi(5) \varphi(7)=4 \times 6=24$


## Fermat and Euler

## Theorem (Fermat's little theorem)

If $p$ is a prime number and $x$ is a positive integer that is coprime with $p$ (i.e. $\operatorname{gcd}(a, p)=1$ ), then we have

$$
x^{p-1}=1 \quad \bmod p
$$

Theorem (Euler's theorem)
If $x$ and $n$ are coprime positive integers, then we have

$$
x^{\varphi(n)}=1 \quad \bmod n
$$

- Euler's theorem is a direct generalization of Fermat's little theorem, because $\varphi(p)=p-1$


## Rivest, Shamir and Adleman

- In 1977, Ron Rivest, Adi Shamir and Leonard Adleman were the first to describe an asymmetric encryption cryptosystem called RSA.


Figure: Ron Rivest (left), Adi Shamir, and Leonard Adleman (right)

## The RSA cryptosystem

- Still widely used today
- works in $\mathbb{Z} / n \mathbb{Z}$, with $n=p q$ product of two primes
- $\varphi(n)=(p-1)(q-1)$
- Alice chooses an integer $e \in \mathbb{N}$ such that $\operatorname{gcd}(e, \varphi(n))=1$
- The pair $(e, n)$ is her public key
- Alice computes an integer $d \in \mathbb{N}$ such that $e \times d=1$ $\bmod \varphi(n)$
- The pair $(d, \varphi(n))$ is her private key


## Encryption And DECRYPTION

- Encryption of a message $x$ is done via

$$
E(x)=x^{e} \quad \bmod n
$$

- Decryption of a encrypted message $y$ is done via

$$
D(y)=y^{d} \quad \bmod n
$$

## Proposition

The RSA cryptosystem works: for any message $x \in \mathbb{Z} / n \mathbb{Z}$, we have $D(E(x))=\left(x^{e}\right)^{d}=x^{e d}=x \bmod n$.

Proof.
By Euler's theorem, we have $x^{\varphi(n)}=1 \bmod n$. We also have $e d=1 \bmod \varphi(n)$, hence there exists $k \in \mathbb{Z}$ with $e d=1+k \varphi(n)$. Thus $x^{e d}=x^{1+k \varphi(n)}=x \bmod n$.

## RSA TOY EXAMPLE

Wants to send $x=7$


## RSA toy example

Wants to send $x=7$

## Public key: $(3,15)$



Chooses $(p, q)=(3,5)$
Computes $\varphi(n)=8$
Chooses $e=3$


Computes $d=3$

## RSA TOY EXAMPLE

## Public key: $(3,15)$

Wants to send $x=7$
Chooses $(p, q)=(3,5)$
Computes $\varphi(n)=8$
Chooses $e=3$


Computes $d=3$

## RSA toy example

## Public key: $(3,15)$

Wants to send $x=7$
Chooses $(p, q)=(3,5)$
Computes $\varphi(n)=8$
Chooses $e=3$


Computes $d=3$
Computes $13^{3}=7 \bmod 15$

## RSA toy example II

Wants to send $x=42$


## RSA toy example II

Public key: $(13,77)$
Chooses $(p, q)=(7,11)$
Computes $\varphi(n)=60$
Chooses $e=13$


Computes $d=37$

## RSA toy example II

Public key: $(13,77)$

Wants to send $x=42$
Chooses $(p, q)=(7,11)$
Computes $\varphi(n)=60$
Chooses $e=13$


Computes $d=37$

## RSA toy example II

Public key: $(13,77)$
Chooses $(p, q)=(7,11)$
Computes $\varphi(n)=60$
Chooses $e=13$
Wants to send $x=42$


Computes $d=37$
Computes $14^{37}=42 \bmod 77$

## RSA SECURITY

- The best technique that we know to break the RSA cryptosystem is to find the factorization

$$
n=p q
$$

- Knowing $p$ and $q$, we can recover $\varphi(n)$
- With $\varphi(n)$, we can recover $d$
- Factorization is believed to be really hard in practice, for large $p$ and $q$
Open questions:
- We do not know if factorization is the best way to break the RSA cryptosystem
- We do not know if factorization is hard


## ONE-WAY FUNCTIONS

## Definition

A function $f: X \rightarrow Y$ is called one-way if $f(x)$ is easy to compute for all $x \in X$, but for essentially all elements $y \in Y$, it is hard to find any $x \in X$ such that $f(x)=y$.

Example
Let us take the function $f: \mathbb{Z} / 17 \mathbb{Z} \rightarrow \mathbb{Z} / 17 \mathbb{Z}$ such that $f(x)=3^{x}$.

| $x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 3 | 9 | 10 | 13 | 5 | 15 | 11 | 16 | 14 | 8 | 7 | 4 | 12 | 2 | 6 | 1 |

## TRAPDOOR ONE-WAY FUNCTIONS

## Definition

A trapdoor one-way function is a one-way function $f: X \rightarrow Y$ with the additional property that given some extra information (called trapdoor information) it becomes easy to find a preimage for any given $y \in Y$, i.e. to find $x \in X$ with $f(x)=y$.

Example
If $n=p q$ and $e$ is an integer such that $\operatorname{gcd}(e, \varphi(n))=1$ then the $\operatorname{map} f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ given by $f(x)=x^{e}$ is a trapdoor one-way function! The trapdoor information is the factorization of $n$.

## CONCLUSION

- One-way functions and trapdoor one-way functions are the basis for asymmetric cryptography
- It is unknown if there are "truly" one-way functions
- often we cannot prove that a problem is "difficult"
- the discrete logarithm problem and the factorization problem are two examples of such difficult problems
- There are still a lot of open questions in (asymmetric) cryptography
- Modular arithmetic $(\mathbb{Z} / n \mathbb{Z})$ gives challenging problems in cryptography, while being simple


## There is more to discover!

- There are many other applications of cryptography
- digital signatures
- authentication
- homomorphic encryption
- ...
- based on many other mathematical objects
- finite fields
- elliptic curves
- isogenies
- lattices
- systems of multivariate equations

