Standard lattices of compatibly embedded finite fields

Luca De Feo, Hugues Randriam, Édouard Rousseau

JNCF 2019

UNIVERSITÉ DE
VERSAILLES
ST-QUENTIN-EN-YVELINES
université PARIS-SACLAY

CONTENTS

Context

Overview

Standard lattices

CONTEXT

- Use of Computer Algebra System (CAS)
- Use of many extensions of a prime finite field \mathbb{F}_{p}
- Computations in $\overline{\mathbb{F}}_{p}$.

Embeddings

- When $l \mid m$, we know $\mathbb{F}_{p^{l}} \hookrightarrow \mathbb{F}_{p^{m}}$
- How to compute this embedding efficiently?
- Naive algorithm: if $\mathbb{F}_{p^{l}}=\mathbb{F}_{p}[x] /(f(x))$, find a root ρ of f in $\mathbb{F}_{p^{m}}$ and map \bar{x} to ρ. Complexity strictly larger than $\tilde{O}\left(l^{2}\right)$.
- Lots of other solutions in the litterature:
- [Lenstra '91]
- [Allombert '02] $\tilde{O}\left(l^{2}\right)$
- [Rains '96]
- [Narayanan '18]

COMPATIBILITY

- K, L, M three finite fields with $K \hookrightarrow L \hookrightarrow M$
- $f: K \hookrightarrow L, g: L \hookrightarrow M, h: K \hookrightarrow M$ embeddings

Compatibility:

COMPATIBILITY

- K, L, M three finite fields with $K \hookrightarrow L \hookrightarrow M$
- $f: K \hookrightarrow L, g: L \hookrightarrow M, h: K \hookrightarrow M$ embeddings

Compatibility:

$$
g \circ f \stackrel{?}{=} h
$$

Ensuring compatibility: Conway polynomials

Definition (m-th Conway polynomials C_{m})

- monic
- irreducible
- degree m
- primitive (i.e. its roots generate $\mathbb{F}_{p^{m}}^{\times}$)
- norm-compatible (i.e. $C_{l}\left(X^{\frac{p^{m}-1}{p^{l}-1}}=0\right)=0 \bmod C_{m}$ if $l \mid m$)

Ensuring compatibility: Conway polynomials

Definition (m-th Conway polynomials C_{m})

- monic
- irreducible
- degree m
- primitive (i.e. its roots generate $\mathbb{F}_{p^{m}}^{\times}$)
- norm-compatible (i.e. $C_{l}\left(X^{\frac{p^{m}-1}{p^{l}-1}}=0\right)=0 \bmod C_{m}$ if $l \mid m$)
- Standard polynomials

Ensuring compatibility: Conway polynomials

Definition (m-th Conway polynomials C_{m})

- monic
- irreducible
- degree m
- primitive (i.e. its roots generate $\mathbb{F}_{p^{m}}^{\times}$)
- norm-compatible (i.e. $C_{l}\left(X^{\frac{p^{m}-1}{p^{l}-1}}=0\right)=0 \bmod C_{m}$ if $l \mid m$)
- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^{m}-1}{p^{l}-1}} \tilde{O}\left(m^{2}\right)$

Ensuring compatibility: Conway polynomials

Definition (m-th Conway polynomials C_{m})

- monic
- irreducible
- degree m
- primitive (i.e. its roots generate $\mathbb{F}_{p^{m}}^{\times}$)
- norm-compatible (i.e. $C_{l}\left(X^{\frac{p^{m}-1}{p^{l}-1}}=0\right)=0 \bmod C_{m}$ if $l \mid m$)
- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^{m}-1}{p^{l}-1}} \tilde{O}\left(m^{2}\right)$
- Hard to compute (exponential complexity)

Ensuring compatibility: Bosma, Cannon and

Steel

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive

Ensuring compatibility: Bosma, Cannon and

Steel

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive
- Inefficient as the number of extensions grows

Ensuring compatibility: Bosma, Cannon and

Steel

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive
- Inefficient as the number of extensions grows

- Non standard polynomials

IDEAS

- Plugging Allombert's embedding algorithm in Bosma, Cannon, and Steel
- Generalizing Bosma, Cannon, and Steel
- Generalizing Conway polynomials

Goal: bring the best of both worlds

ALLOMBERT'S EMBEDDING ALGORITHM I

- Based on an extension of Kummer theory
- For $p \nmid l$, we work in $A_{l}=\mathbb{F}_{p^{l}} \otimes \mathbb{F}_{p}\left(\zeta_{l}\right)$, and study

$$
\begin{equation*}
(\sigma \otimes 1)(x)=\left(1 \otimes \zeta_{l}\right) x \tag{H90}
\end{equation*}
$$

- Solutions of (H90) form a $\mathbb{F}_{p}\left(\zeta_{l}\right)$-vector space of dimension 1
- $\alpha_{l}=\sum_{j=0}^{a-1} x_{j} \otimes \zeta_{l}^{j}$ solution of (H90), then x_{0} generates $\mathbb{F}_{p^{l}}$.
- Let $\left\lfloor\alpha_{l}\right\rfloor=x_{0}$ the projection on the first coordinate
- $\left(\alpha_{l}\right)^{l}=1 \otimes c \quad \in 1 \otimes \mathbb{F}_{p}\left(\zeta_{l}\right)$

ALLOMBERT'S EMBEDDING ALGORITHM II

Input: $\mathbb{F}_{p^{\prime}}, \mathbb{F}_{p^{m}}$, with $l \mid m, \zeta_{l}$ and ζ_{m} with $\left(\zeta_{m}\right)^{m / l}=\zeta_{l}$
Output: $s \in \mathbb{F}_{p^{l}}, t \in \mathbb{F}_{p^{m}}$, such that $s \mapsto t$ defines an embedding $\phi: \mathbb{F}_{p^{l}} \rightarrow \mathbb{F}_{p^{m}}$

1. Construct A_{l} and A_{m}
2. Find $\alpha_{l} \in A_{l}$ and $\alpha_{m} \in A_{m}$, nonzero solutions of (H90) for the roots ζ_{l} and ζ_{m}
3. Compute $\left(\alpha_{l}\right)^{l}=1 \otimes c_{l}$ and $\left(\alpha_{m}\right)^{m}=1 \otimes c_{m}$
4. Compute $\kappa_{l, m}$ a l-th root of \mathcal{c}_{l} / c_{m}
5. Return $\left\lfloor\alpha_{l}\right\rfloor$ and $\left\lfloor\left(1 \otimes \kappa_{l, m}\right)\left(\alpha_{m}\right)^{m / l}\right\rfloor$

Allombert and Bosma, CANON, AND STEEL

- Need to store one constant $\kappa_{l, m}$ for each pair $\left(\mathbb{F}_{p^{l}}, \mathbb{F}_{p^{m}}\right)$
- The constant $\kappa_{l, m}$ depends on α_{l} and α_{m}

We would like to:

- get rid of the constants $\kappa_{l, m}\left(e . g\right.$. have $\left.\kappa_{l, m}=1\right)$
- equivalently, get "standard" solutions of (H90)
- select solutions α_{l}, α_{m} that always define the same embedding
- such that the constants $\kappa_{l, m}$ are well understood (e.g. $\kappa_{l, m}=1$)

THE CASE $l|m| p-1$

Let $l|m| p-1$

- $A_{l}=\mathbb{F}_{p^{l}} \otimes \mathbb{F}_{p} \cong \mathbb{F}_{p^{l}}$
- $A_{m}=\mathbb{F}_{p^{m}}$
- $\sigma\left(\alpha_{l}\right)=\zeta_{l} \alpha_{l}$ and $\sigma\left(\alpha_{m}\right)=\zeta_{m} \alpha_{m}$
- $\left(\alpha_{l}\right)^{l}=c_{l} \quad \in \mathbb{F}_{p}$ and $\left(\alpha_{m}\right)^{m}=c_{m} \quad \in \mathbb{F}_{p}$
- $\kappa_{l, m}=\sqrt[l]{c_{l} / c_{m}}$
- $\kappa_{l, m}=1$ implies $c_{l}=c_{m}$

In particular, for $m=p-1$ we obtain
$\sigma\left(\alpha_{p-1}\right)=\left(\alpha_{p-1}\right)^{p}=\zeta_{p-1} \alpha_{p-1}$

- $\left(\alpha_{p-1}\right)^{p-1}=c_{p-1}=\zeta_{p-1}$
- this implies $\forall l \mid p-1, c_{l}=\zeta_{p-1}$

COMPLETE ALGEBRA

Let $A_{l}=\mathbb{F}_{p^{l}} \otimes \mathbb{F}_{p}\left(\zeta_{l}\right)$
Definition (degree, level)

- degree of $A_{l}: l$
- level of $A_{l}: a=\left[\mathbb{F}_{p}\left(\zeta_{l}\right): \mathbb{F}_{p}\right]$

Idea: consider the largest algebra for a given level
Definition (Complete algebra of level a)
$-A_{p^{a}-1}=\mathbb{F}_{p^{p^{a}-1}} \otimes \mathbb{F}_{p}\left(\zeta_{p^{a}-1}\right) \cong \mathbb{F}_{p^{p^{a}-1}} \otimes \mathbb{F}_{p^{a}}$

Standard solutions

How to define standard solutions of (H90)?
Lemma
If $\alpha_{p^{a}-1}$ is a solution of (H90) for $\zeta_{p^{a}-1}$, then $c_{p^{a}-1}=\left(\zeta_{p^{a}-1}\right)^{a}$.
Definition (Standard solution)
Let A_{l} an algebra of level $a, \alpha_{l} \in A_{l}$ a solution of (H90) for
$\zeta_{l}=\left(\zeta_{p^{a}-1}\right)^{\frac{p^{a}-1}{l}}, \alpha_{l}$ is standard if $c_{l}=\left(\zeta_{p^{a}-1}\right)^{a}$
Definition (Standard polynomial)
All standard solutions α_{l} define the same irreducible polynomial of degree l, we call it the standard polynomial of degree l.

STANDARD EMBEDDINGS (SAME LEVEL)

Let $l \mid m$ and A_{l}, A_{m} algebras with the same level $a, \zeta_{l}=\left(\zeta_{m}\right)^{m / l}$

- α_{l} and α_{m} standard solutions of (H90) for ζ_{l} and ζ_{m}

STANDARD EMBEDDINGS (SAME LEVEL)

Let $l \mid m$ and A_{l}, A_{m} algebras with the same level $a, \zeta_{l}=\left(\zeta_{m}\right)^{m / l}$

- α_{l} and α_{m} standard solutions of (H90) for ζ_{l} and ζ_{m}
- $c_{l}=c_{m}=\left(\zeta_{p^{a}-1}\right)^{a}$

STANDARD EMBEDDINGS (SAME LEVEL)

Let $l \mid m$ and A_{l}, A_{m} algebras with the same level $a, \zeta_{l}=\left(\zeta_{m}\right)^{m / l}$

- α_{l} and α_{m} standard solutions of (H90) for ζ_{l} and ζ_{m}
- $c_{l}=c_{m}=\left(\zeta_{p^{a}-1}\right)^{a}$
- $\kappa_{l, m}=1$

STANDARD EMBEDDINGS (SAME LEVEL)

Let $l \mid m$ and A_{l}, A_{m} algebras with the same level $a, \zeta_{l}=\left(\zeta_{m}\right)^{m / l}$

- α_{l} and α_{m} standard solutions of (H90) for ζ_{l} and ζ_{m}

$$
\begin{aligned}
c_{l} & =c_{m}=\left(\zeta_{p^{a}-1}\right)^{a} \\
& \forall \kappa_{l, m}=1
\end{aligned}
$$

- The embedding $\left\lfloor\alpha_{l}\right\rfloor \mapsto\left\lfloor\left(\alpha_{m}\right)^{m / l}\right\rfloor$ is standard too (only depends on $\zeta_{p^{a}-1}$).

STANDARD EMBEDDINGS (DIFFERENT LEVEL)

Let $l \mid m$ and A_{l} of level a, A_{m} of level $b, a \neq b$.

- Natural norm-compatibility condition, we want:

$$
\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{p^{b}-1}}=N\left(\zeta_{p^{b}-1}\right)=\phi_{\mathbb{F}_{p^{a}} \rightarrow \mathbb{F}_{p^{b}}}\left(\zeta_{p^{a}-1}\right)
$$

STANDARD EMBEDDINGS (DIFFERENT LEVEL)

Let $l \mid m$ and A_{l} of level a, A_{m} of level $b, a \neq b$.

- Natural norm-compatibility condition, we want:

$$
\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{p^{p}-1}}=N\left(\zeta_{p^{b}-1}\right)=\phi_{\mathbb{F}_{p^{a}} \rightarrow \mathbb{F}_{p^{b}}}\left(\zeta_{p^{a}-1}\right)
$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha)=\prod_{j=0}^{b / a-1}\left(1 \otimes \sigma^{a j}\right)(\alpha)$

STANDARD EMBEDDINGS (DIFFERENT LEVEL)

Let $l \mid m$ and A_{l} of level a, A_{m} of level $b, a \neq b$.

- Natural norm-compatibility condition, we want:

$$
\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{p^{a}-1}}=N\left(\zeta_{p^{b}-1}\right)=\phi_{\mathbb{F}_{p^{p}} \rightarrow \mathbb{F}_{p^{b}}}\left(\zeta_{p^{a}-1}\right)
$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha)=\prod_{j=0}^{b / a-1}\left(1 \otimes \sigma^{a j}\right)(\alpha)$

- We obtain $\mathcal{N}\left(\alpha_{p^{b}-1}\right)=\Phi_{A_{p^{a}-1} \hookrightarrow A_{p^{b}-1}}\left(\alpha_{p^{a}-1}\right)$

STANDARD EMBEDDINGS (DIFFERENT LEVEL)

Let $l \mid m$ and A_{l} of level a, A_{m} of level $b, a \neq b$.

- Natural norm-compatibility condition, we want:

$$
\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{p^{-}-1}}=N\left(\zeta_{p^{b}-1}\right)=\phi_{\mathbb{F}_{p^{a}} \leadsto \mathbb{F}_{p^{b}}}\left(\zeta_{p^{a}-1}\right)
$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha)=\prod_{j=0}^{b / a-1}\left(1 \otimes \sigma^{a j}\right)(\alpha)$

- We obtain $\mathcal{N}\left(\alpha_{p^{b}-1}\right)=\Phi_{A_{p^{a}-1} \hookrightarrow A_{p^{b}-1}}\left(\alpha_{p^{a}-1}\right)$
- We know that

$$
\begin{aligned}
& \left(\alpha_{p^{b}-1}\right)^{\frac{p^{b^{p}-1}}{p^{a}-1}}=\left(1 \otimes \kappa_{p^{a}-1, p^{b}-1}\right) \Phi_{A_{p^{a}-1} \rightarrow A_{p^{b}-1}}\left(\alpha_{p^{a}-1}\right) \text { with } \\
& \kappa_{p^{a}-1, p^{b}-1}=\left(\zeta_{p^{b}-1}\right) \frac{(a-b) p^{p+}+b+p^{b}-p p^{p}}{\left(p^{p}-1\right)^{2}}
\end{aligned}
$$

STANDARD EMBEDDINGS (DIFFERENT LEVEL)

Let $l \mid m$ and A_{l} of level a, A_{m} of level $b, a \neq b$.

- Natural norm-compatibility condition, we want:

$$
\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{p^{b}-1}}=N\left(\zeta_{p^{b}-1}\right)=\phi_{\mathbb{F}_{p^{a}} \hookrightarrow \mathbb{F}_{p^{b}}}\left(\zeta_{p^{a}-1}\right)
$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha)=\prod_{j=0}^{b / a-1}\left(1 \otimes \sigma^{a j}\right)(\alpha)$

- We obtain $\mathcal{N}\left(\alpha_{p^{b}-1}\right)=\Phi_{A_{p^{a}-1} \hookrightarrow A_{p^{b}-1}}\left(\alpha_{p^{a}-1}\right)$
- We know that

$$
\begin{aligned}
& \left(\alpha_{p^{b}-1}\right)^{p^{p^{b}-1}}=\left(1 \otimes \kappa_{p^{a}-1, p^{b}-1}\right) \Phi_{A_{p^{a}-1} \hookrightarrow A_{p^{b}-1}}\left(\alpha_{p^{a}-1}\right) \text { with } \\
& \kappa_{p^{a}-1, p^{b}-1}=\left(\zeta_{p^{b}-1}\right) \frac{\left(a-b p^{p+b}+b b^{b}-a p^{p}\right.}{\left(p^{p}-1\right)^{2}}
\end{aligned}
$$

- If α_{l} and α_{m} are standard solutions, then

$$
\kappa_{l, m}=\left(\zeta_{p^{b}-1}\right)^{\frac{(a-b) p^{a+b}+b p^{b}-a p^{a}}{\left(p^{a}-1\right) l}}
$$

STANDARD EMBEDDINGS (DIFFERENT LEVEL)

Let $l \mid m$ and A_{l} of level a, A_{m} of level $b, a \neq b$ and
$-\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{p^{a}-1}}=N\left(\zeta_{p^{b}-1}\right)=\phi_{\mathbb{F}_{p^{a}} \leftrightarrows \mathbb{F}_{p^{b}}}\left(\zeta_{p^{a}-1}\right)$

- $\zeta_{l}=\left(\zeta_{p^{a}-1}\right)^{\frac{p^{a}-1}{l}}$
- $\zeta_{m}=\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{m}}$
- α_{l} and α_{m} standard solutions of (H90) for ζ_{l} and ζ_{m}
- $\kappa_{l, m}$ only depends on $\zeta_{p^{b}-1}$ and is easy to compute
- The embedding $\left\lfloor\alpha_{l}\right\rfloor \mapsto\left\lfloor\left(1 \otimes \kappa_{l, m}\right)\left(\alpha_{m}\right)^{m / l}\right\rfloor$ is standard too (only depends on $\zeta_{p^{a}-1}, \zeta_{p^{b}-1}$).

STANDARD EMBEDDINGS (DIFFERENT LEVEL)

Let $l \mid m$ and A_{l} of level a, A_{m} of level $b, a \neq b$ and
$-\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{p^{a}-1}}=N\left(\zeta_{p^{b}-1}\right)=\phi_{\mathbb{F}_{p^{a}} \leftrightarrows \mathbb{F}_{p^{b}}}\left(\zeta_{p^{a}-1}\right)$

- $\zeta_{l}=\left(\zeta_{p^{a}-1}\right)^{\frac{p^{a}-1}{l}}$
- $\zeta_{m}=\left(\zeta_{p^{b}-1}\right)^{\frac{p^{b}-1}{m}}$
- α_{l} and α_{m} standard solutions of (H90) for ζ_{l} and ζ_{m}
- $\kappa_{l, m}$ only depends on $\zeta_{p^{b}-1}$ and is easy to compute
- The embedding $\left\lfloor\alpha_{l}\right\rfloor \mapsto\left\lfloor\left(1 \otimes \kappa_{l, m}\right)\left(\alpha_{m}\right)^{m / l}\right\rfloor$ is standard too (only depends on $\zeta_{p^{a}-1}, \zeta_{p^{b}-1}$).

COMPATIBILITY AND COMPLEXITY

Proposition (Compatibility)

Let $l|m| n$ and $f: \mathbb{F}_{p^{l}} \hookrightarrow \mathbb{F}_{p^{m}}, g: \mathbb{F}_{p^{m}} \hookrightarrow \mathbb{F}_{p^{n}}, h: \mathbb{F}_{p^{\prime}} \hookrightarrow \mathbb{F}_{p^{n}}$ the standard embeddings. Then we have $g \circ f=h$.

Proposition (Complexity)
Given a collection of Conway polynomials of degree up to d, for any $l|m| p^{i}-1, i \leq d$

- Computing a standard solution α_{l} takes $\tilde{O}\left(l^{2}\right)$
- Given α_{l} and α_{m}, computing the standard embedding $f: \mathbb{F}_{p^{l}} \hookrightarrow \mathbb{F}_{p^{m}}$ takes $\tilde{O}\left(m^{2}\right)$

IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.

Figure: Timings for computing α_{l} (left, logscale), and for computing $\mathbb{F}_{p^{2}} \hookrightarrow \mathbb{F}_{p^{l}}$ (right, logscale) for $p=3$.

STANDARD POLYNOMIALS

$$
\begin{array}{r}
x+1 \\
x^{3}+x+1 \\
x^{5}+x^{3}+1 \\
x^{7}+x+1 \\
x^{9}+x^{7}+x^{4}+x^{2}+1 \\
x^{11}+x^{8}+x^{7}+x^{6}+x^{2}+x+1 \\
x^{13}+x^{10}+x^{5}+x^{3}+1 \\
x^{15}+x+1 \\
x^{19}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{8}+x^{7}+x^{6}+x^{5}+x^{3}+1
\end{array}
$$

Table: The ten first standard polynomials derived from Conway polynomials for $p=2$.

CONCLUSION, FUTURE WORKS

- We implicitly assume that we have compatible roots ζ (i.e. $\zeta_{l}=\left(\zeta_{m}\right)^{m / l}$ for $l \mid m$
- In practice, this is done using Conway polynomials
- With Conway polynomials up to degree d, we can compute embeddings to finite fields up to any degree $l \mid p^{i}-1, i \leq d$
- quasi-quadratic complexity

Future works:

- Make this less standard, but more practical

Thank you! Merci !

