Standard lattices of compatibly embedded finite fields

Luca De Feo, Hugues Randriam, Édouard Rousseau

JNCF 2019

Context	Overview	Standard lattices
00000	0000	00000000000

CONTENTS

Context

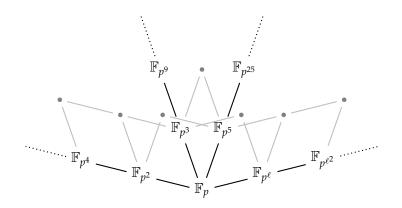
Overview

Standard lattices

Context	Overview	Standard lattices
00000	0000	00000000000

CONTEXT

- Use of Computer Algebra System (CAS)
- Use of many extensions of a prime finite field \mathbb{F}_p
- Computations in $\overline{\mathbb{F}}_p$.



Embeddings

Context

00000

- When $l \mid m$, we know $\mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$
 - How to compute this embedding *efficiently*?

Overview

- Naive algorithm: if $\mathbb{F}_{p^l} = \mathbb{F}_p[x]/(f(x))$, find a root ρ of f in \mathbb{F}_{p^m} and map \bar{x} to ρ . Complexity strictly larger than $\tilde{O}(l^2)$.
- Lots of other solutions in the litterature:
 - ▶ [Lenstra '91]
 - [Allombert '02] $\tilde{O}(l^2)$
 - [Rains '96]
 - [Narayanan '18]

COMPATIBILITY

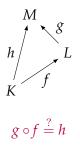
K, *L*, *M* three finite fields with *K* → *L* → *M f* : *K* → *L*, *g* : *L* → *M*, *h* : *K* → *M* embeddings

Compatibility:

COMPATIBILITY

► K, L, M three finite fields with $K \hookrightarrow L \hookrightarrow M$ ► $f : K \hookrightarrow L, g : L \hookrightarrow M, h : K \hookrightarrow M$ embeddings

Compatibility:



Context	Overview	Standard lattices
00000	0000	00000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

Context	Overview	Standard lattices
00000	0000	00000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

Standard polynomials

Context	Overview	Standard lattices
00000	0000	00000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$

Context	Overview	Standard lattices
00000	0000	00000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

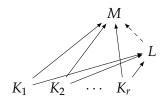
• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$
- Hard to compute (exponential complexity)

Context	Overview	Standard lattices
00000	0000	00000000000

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

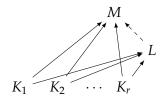
- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive



Context	Overview	Standard lattices
00000	0000	00000000000

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

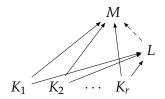
- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive
 - Inefficient as the number of extensions grows



Context	Overview	Standard lattices
00000	0000	00000000000

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive
 - Inefficient as the number of extensions grows



Non standard polynomials

IDEAS

- Plugging Allombert's embedding algorithm in Bosma, Cannon, and Steel
- Generalizing Bosma, Cannon, and Steel
- Generalizing Conway polynomials
- Goal: bring the best of both worlds

Allombert's embedding algorithm I

- Based on an extension of *Kummer theory* For p ∤ l, we work in A_l = F_{p^l} ⊗ F_p(ζ_l), and study
 (σ ⊗ 1)(x) = (1 ⊗ ζ_l)x (H90)
- Solutions of (H90) form a 𝔽_p(ζ_l)-vector space of dimension 1
- α_l = ∑_{j=0}^{a-1} x_j ⊗ ζ_l^j solution of (H90), then x₀ generates F_{p^l}.
 Let ⌊α_l ⊨ x₀ the projection on the first coordinate
 (α_l)^l = 1 ⊗ c ∈ 1 ⊗ F_p(ζ_l)

Allombert's embedding algorithm II

Input: \mathbb{F}_{p^l} , \mathbb{F}_{p^m} , with $l \mid m$, ζ_l and ζ_m with $(\zeta_m)^{m/l} = \zeta_l$ **Output:** $s \in \mathbb{F}_{p^l}$, $t \in \mathbb{F}_{p^m}$, such that $s \mapsto t$ defines an embedding $\phi : \mathbb{F}_{p^l} \to \mathbb{F}_{p^m}$

- 1. Construct A_l and A_m
- 2. Find $\alpha_l \in A_l$ and $\alpha_m \in A_m$, nonzero solutions of (H90) for the roots ζ_l and ζ_m
- 3. Compute $(\alpha_l)^l = 1 \otimes c_l$ and $(\alpha_m)^m = 1 \otimes c_m$
- 4. Compute $\kappa_{l,m}$ a *l*-th root of c_l/c_m
- 5. Return $\lfloor \alpha_l \rfloor$ and $\lfloor (1 \otimes \kappa_{l,m})(\alpha_m)^{m/l} \rfloor$

Allombert and Bosma, Canon, and Steel

- ▶ Need to store one constant $\kappa_{l,m}$ for each pair $(\mathbb{F}_{p^l}, \mathbb{F}_{p^m})$
- The constant $\kappa_{l,m}$ depends on α_l and α_m

We would like to:

- get rid of the constants $\kappa_{l,m}$ (e.g. have $\kappa_{l,m} = 1$)
- equivalently, get "standard" solutions of (H90)
 - select solutions α_l, α_m that always define the same embedding
 - such that the constants $\kappa_{l,m}$ are well understood (*e.g.* $\kappa_{l,m} = 1$)

The case $l \mid m \mid p - 1$

Let
$$l | m | p - 1$$

 $A_l = \mathbb{F}_{p^l} \otimes \mathbb{F}_p \cong \mathbb{F}_{p^l}$
 $A_m = \mathbb{F}_{p^m}$
 $\sigma(\alpha_l) = \zeta_l \alpha_l \text{ and } \sigma(\alpha_m) = \zeta_m \alpha_m$
 $(\alpha_l)^l = c_l \in \mathbb{F}_p \text{ and } (\alpha_m)^m = c_m \in \mathbb{F}_p$
 $\kappa_{l,m} = \sqrt[l]{c_l/c_m}$
 $\kappa_{l,m} = 1 \text{ implies } c_l = c_m$
In particular, for $m = p - 1$ we obtain
 $\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$
 $(\alpha_{p-1})^{p-1} = c_{p-1} = \zeta_{p-1}$
 $\text{ this implies } \forall l | p - 1, c_l = \zeta_{p-1}$

COMPLETE ALGEBRA

Let $A_l = \mathbb{F}_{p^l} \otimes \mathbb{F}_p(\zeta_l)$

Definition (degree, level)

• *level* of
$$A_l$$
: $a = [\mathbb{F}_p(\zeta_l) : \mathbb{F}_p]$

Idea: consider the largest algebra for a given level Definition (Complete algebra of level *a*)

$$\blacktriangleright A_{p^a-1} = \mathbb{F}_{p^{p^a-1}} \otimes \mathbb{F}_p(\zeta_{p^a-1}) \cong \mathbb{F}_{p^{p^a-1}} \otimes \mathbb{F}_{p^a}$$

STANDARD SOLUTIONS

How to define standard solutions of (H90)?

Lemma

If α_{p^a-1} is a solution of (H90) for ζ_{p^a-1} , then $c_{p^a-1} = (\zeta_{p^a-1})^a$.

Definition (Standard solution)

Let A_l an algebra of level a, $\alpha_l \in A_l$ a solution of (H90) for $\zeta_l = (\zeta_{p^a-1})^{\frac{p^a-1}{l}}$, α_l is standard if $c_l = (\zeta_{p^a-1})^a$

Definition (Standard polynomial)

All standard solutions α_l define the same irreducible polynomial of degree *l*, we call it the **standard polynomial** of degree *l*.

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$ $\land \alpha_l$ and α_m standard solutions of (H90) for ζ_l and ζ_m

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$ $\land \alpha_l$ and α_m standard solutions of (H90) for ζ_l and ζ_m $\land c_l = c_m = (\zeta_{p^a-1})^a$

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$ $\land \alpha_l$ and α_m standard solutions of (H90) for ζ_l and ζ_m $\land c_l = c_m = (\zeta_{p^a-1})^a$ $\land \kappa_{l,m} = 1$

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$

• α_l and α_m standard solutions of (H90) for ζ_l and ζ_m

$$c_l = c_m = (\zeta_{p^a - 1})^a$$
$$\kappa_{l,m} = 1$$

► The embedding $\lfloor \alpha_l \rfloor \mapsto \lfloor (\alpha_m)^{m/l} \rfloor$ is standard too (only depends on ζ_{p^a-1}).

Context 00000	Overview 0000	Standard lattices

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

▶ Natural norm-compatibility condition, we want:

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^a-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

Context	Overview	Standard lattices
00000	0000	00000000000

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

► Natural norm-compatibility condition, we want:

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^a-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha) = \prod_{i=0}^{b/a-1} (1 \otimes \sigma^{a_i})(\alpha)$

Context	Overview	Standard lattices
00000	0000	00000000000

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

► Natural norm-compatibility condition, we want:

$$(\zeta_{p^{b}-1})^{\frac{p^{b}-1}{p^{a}-1}} = N(\zeta_{p^{b}-1}) = \phi_{\mathbb{F}_{p^{a}} \hookrightarrow \mathbb{F}_{p^{b}}}(\zeta_{p^{a}-1})$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha) = \prod_{i=0}^{b/a-1} (1 \otimes \sigma^{a_i})(\alpha)$

• We obtain
$$\mathcal{N}(\alpha_{p^b-1}) = \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1})$$

000000000000000000000000000000000000000	s
	С

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

Natural norm-compatibility condition, we want:

$$(\zeta_{p^{b}-1})^{\frac{p^{b}-1}{p^{a}-1}} = N(\zeta_{p^{b}-1}) = \phi_{\mathbb{F}_{p^{a}} \hookrightarrow \mathbb{F}_{p^{b}}}(\zeta_{p^{a}-1})$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha) = \prod_{j=0}^{b/a-1} (1 \otimes \sigma^{aj})(\alpha)$

• We obtain $\mathcal{N}(\alpha_{p^b-1}) = \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1})$

• We know that

$$(\alpha_{p^{b}-1})^{\frac{p^{b}-1}{p^{a}-1}} = (1 \otimes \kappa_{p^{a}-1,p^{b}-1}) \Phi_{A_{p^{a}-1} \hookrightarrow A_{p^{b}-1}}(\alpha_{p^{a}-1})$$
 with
 $\kappa_{p^{a}-1,p^{b}-1} = (\zeta_{p^{b}-1})^{\frac{(a-b)p^{a+b}+bp^{b}-ap^{a}}{(p^{a}-1)^{2}}}$

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

► Natural norm-compatibility condition, we want:

$$(\zeta_{p^{b}-1})^{\frac{p^{b}-1}{p^{a}-1}} = N(\zeta_{p^{b}-1}) = \phi_{\mathbb{F}_{p^{a}} \hookrightarrow \mathbb{F}_{p^{b}}}(\zeta_{p^{a}-1})$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha) = \prod_{j=0}^{b/a-1} (1 \otimes \sigma^{aj})(\alpha)$

• We obtain $\mathcal{N}(\alpha_{p^b-1}) = \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1})$

• We know that

$$(\alpha_{p^b-1})^{\frac{p^b-1}{p^a-1}} = (1 \otimes \kappa_{p^a-1,p^b-1}) \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1})$$
 with
 $\kappa_{p^a-1,p^b-1} = (\zeta_{p^b-1})^{\frac{(a-b)p^{a+b}+bp^b-ap^a}{(p^a-1)^2}}$

• If α_l and α_m are standard solutions, then $\kappa_{l,m} = (\zeta_{p^b-1})^{\frac{(a-b)p^{a+b}+bp^b-ap^a}{(p^a-1)l}}$

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$ and

•
$$(\zeta_{p^{b}-1})^{\frac{p^{b}-1}{p^{a}-1}} = N(\zeta_{p^{b}-1}) = \phi_{\mathbb{F}_{p^{a}} \hookrightarrow \mathbb{F}_{p^{b}}}(\zeta_{p^{a}-1})$$

• $\zeta_{l} = (\zeta_{p^{a}-1})^{\frac{p^{a}-1}{l}}$
• $\zeta_{m} = (\zeta_{p^{b}-1})^{\frac{p^{b}-1}{m}}$

- α_l and α_m standard solutions of (H90) for ζ_l and ζ_m
- $\kappa_{l,m}$ only depends on ζ_{p^b-1} and is easy to compute
- ► The embedding $\lfloor \alpha_l \rfloor \mapsto \lfloor (1 \otimes \kappa_{l,m})(\alpha_m)^{m/l} \rfloor$ is standard too (only depends on $\zeta_{p^a-1}, \zeta_{p^b-1}$).

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$ and

•
$$(\zeta_{p^{b}-1})^{\frac{p^{b}-1}{p^{a}-1}} = N(\zeta_{p^{b}-1}) = \phi_{\mathbb{F}_{p^{a}} \hookrightarrow \mathbb{F}_{p^{b}}}(\zeta_{p^{a}-1})$$

• $\zeta_{l} = (\zeta_{p^{a}-1})^{\frac{p^{a}-1}{l}}$
• $\zeta_{m} = (\zeta_{p^{b}-1})^{\frac{p^{b}-1}{m}}$

- α_l and α_m standard solutions of (H90) for ζ_l and ζ_m
- $\kappa_{l,m}$ only depends on ζ_{p^b-1} and is easy to compute
- ► The embedding $\lfloor \alpha_l \rfloor \mapsto \lfloor (1 \otimes \kappa_{l,m})(\alpha_m)^{m/l} \rfloor$ is standard too (only depends on $\zeta_{p^a-1}, \zeta_{p^b-1}$).

COMPATIBILITY AND COMPLEXITY

Proposition (Compatibility)

Let $l \mid m \mid n$ and $f : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}, g : \mathbb{F}_{p^m} \hookrightarrow \mathbb{F}_{p^n}, h : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^n}$ the standard embeddings. Then we have $g \circ f = h$.

Proposition (Complexity)

Given a collection of Conway polynomials of degree up to d, for any $l \mid m \mid p^i - 1, i \leq d$

- Computing a standard solution α_l takes $\tilde{O}(l^2)$
- Given α_l and α_m , computing the standard embedding $f : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$ takes $\tilde{O}(m^2)$

Context	Overview	Standard lattices
00000	0000	000000000000

IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.

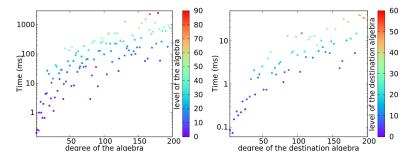


Figure: Timings for computing α_l (left, logscale), and for computing $\mathbb{F}_{p^2} \hookrightarrow \mathbb{F}_{p^l}$ (right, logscale) for p = 3.

STANDARD POLYNOMIALS

x + 1 $x^3 + x + 1$ $x^5 + x^3 + 1$ $x^7 + x + 1$ $x^9 + x^7 + x^4 + x^2 + 1$ $x^{11} + x^8 + x^7 + x^6 + x^2 + x + 1$ $x^{13} + x^{10} + x^5 + x^3 + 1$ $r^{15} + r + 1$ $x^{17} + x^{11} + x^{10} + x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + x + 1$ $x^{19} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^8 + x^7 + x^6 + x^5 + x^3 + 1$

Table: The ten first standard polynomials derived from Conway polynomials for p = 2.

CONCLUSION, FUTURE WORKS

• We implicitly assume that we have **compatible roots** ζ (*i.e.* $\zeta_l = (\zeta_m)^{m/l}$ for $l \mid m$

In practice, this is done using Conway polynomials

▶ With Conway polynomials up to degree *d*, we can compute embeddings to finite fields up to any degree $l | p^i - 1, i \le d$

quasi-quadratic complexity

Future works:

Make this less standard, but more practical

Thank you! Merci !