Context	Overview	Standard lattices
00000	0000	0000000000

Standard lattices of compatibly embedded finite fields

Luca De Feo, Hugues Randriam, Édouard Rousseau

July 16, 2019

Context	Overview	Standard lattices
00000	0000	0000000000

CONTEXT

- Use of Computer Algebra System (CAS)
- Use of many extensions of a prime finite field \mathbb{F}_p
- Computations in $\overline{\mathbb{F}}_p$.

Context	Overview	Standard lattices
00000	0000	0000000000

CONTEXT

- Use of Computer Algebra System (CAS)
- Use of many extensions of a prime finite field \mathbb{F}_p
- Computations in $\overline{\mathbb{F}}_p$.

EMBEDDINGS

Context

00000

- When $l \mid m$, we know $\mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$
 - How to compute this embedding efficiently?

Overview

- ▶ Naive algorithm: if $\mathbb{F}_{p^l} = \mathbb{F}_p[x]/(f(x))$, find a root ρ of f in \mathbb{F}_{p^m} and map \bar{x} to ρ . Complexity strictly larger than $\tilde{O}(l^2)$.
- Lots of other solutions in the litterature:
 - ▶ [Lenstra '91]
 - [Allombert '02] $\tilde{O}(l^2)$
 - [Rains '96]
 - [Narayanan '18]

COMPATIBILITY

▶ *K*, *L*, *M* three finite fields with $K \hookrightarrow L \hookrightarrow M$ ▶ $f : K \hookrightarrow L, g : L \hookrightarrow M, h : K \hookrightarrow M$ embeddings

Compatibility:

COMPATIBILITY

▶ *K*, *L*, *M* three finite fields with $K \hookrightarrow L \hookrightarrow M$ ▶ *f* : *K* \hookrightarrow *L*, *g* : *L* \hookrightarrow *M*, *h* : *K* \hookrightarrow *M* embeddings

Compatibility:

Context	Overview	Standard lattices
00000	0000	0000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

Context	Overview	Standard lattices
00000	0000	0000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

Standard polynomials

Context	Overview	Standard lattices
00000	0000	0000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$

Context	Overview	Standard lattices
00000	0000	0000000000

Definition (*m*-th Conway polynomials *C_m*)

- monic
- irreducible
- degree m
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)

• norm-compatible (i.e.
$$C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$$
 if $l\mid m$)

- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$
- Hard to compute (exponential complexity)

Context	Overview	Standard lattices
00000	0000	0000000000

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints on the embedding imply that adding a new embedding can be expensive

Context	Overview	Standard lattices
00000	0000	0000000000

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints on the embedding imply that adding a new embedding can be expensive
 - Inefficient as the number of extensions grows

Context	Overview	Standard lattices
00000	0000	0000000000

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints on the embedding imply that adding a new embedding can be expensive
 - Inefficient as the number of extensions grows

IDEAS

- Plugging Allombert's embedding algorithm in Bosma, Cannon, and Steel
- Generalizing Bosma, Cannon, and Steel
- Generalizing Conway polynomials
- Goal: bring the best of both worlds

Allombert's embedding algorithm I

- ► Based on *Kummer theory*
- For l | (p 1), we work in \mathbb{F}_{p^l} , and study

$$\sigma(x) = \zeta_l x \tag{H90}$$

where $(\zeta_l)^l = 1$ and $\zeta_l \in \mathbb{F}_p \subset \mathbb{F}_{p^l}$

- Solutions of (H90) form a \mathbb{F}_p -vector space of dimension 1
- α_l solution of (H90) generates \mathbb{F}_{p^l}

$$\blacktriangleright \ (\alpha_l)^l = c \quad \in \mathbb{F}_p$$

Allombert's embedding algorithm II

- **Input:** \mathbb{F}_{p^l} , \mathbb{F}_{p^m} , with $l \mid m \mid (p-1)$, ζ_l and ζ_m with $(\zeta_m)^{m/l} = \zeta_l$ **Output:** $s \in \mathbb{F}_{p^l}$, $t \in \mathbb{F}_{p^m}$, such that $s \mapsto t$ defines an embedding $\phi : \mathbb{F}_{p^l} \to \mathbb{F}_{p^m}$
 - 1. Find $\alpha_l \in \mathbb{F}_{p^l}$ and $\alpha_m \in \mathbb{F}_{p^m}$, nonzero solutions of (H90) for the roots ζ_l and ζ_m
 - 2. Compute $(\alpha_l)^l = c_l$ and $(\alpha_m)^m = c_m$
 - 3. Compute $\kappa_{l,m}$ a *l*-th root of c_l/c_m
 - 4. Return α_l and $\kappa_{l,m}(\alpha_m)^{m/l}$

Allombert and Bosma, Canon, and Steel

- ▶ Need to store one constant $\kappa_{l,m}$ for each pair $(\mathbb{F}_{p^l}, \mathbb{F}_{p^m})$
- The constant $\kappa_{l,m}$ depends on α_l and α_m

We would like to:

- get rid of the constants $\kappa_{l,m}$ (e.g. have $\kappa_{l,m} = 1$)
- equivalently, get "standard" solutions of (H90)
 - select solutions α_l, α_m that always define the same embedding
 - such that the constants $\kappa_{l,m}$ are well understood (*e.g.* $\kappa_{l,m} = 1$)

Let
$$l | m | p - 1$$
, $(\zeta_m)^{m/l} = \zeta_l$
 $\sim \alpha_l \in \mathbb{F}_{p^l}$ and $\alpha_m \in \mathbb{F}_{p^m}$ solutions of H90 for ζ_l and ζ_m
 $\sim \kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1$ implies $c_l = c_m$

Let
$$l | m | p - 1$$
, $(\zeta_m)^{m/l} = \zeta_l$
• $\alpha_l \in \mathbb{F}_{p^l}$ and $\alpha_m \in \mathbb{F}_{p^m}$ solutions of H90 for ζ_l and ζ_m
• $\kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1$ implies $c_l = c_m$
In particular, for $m = p - 1$

$$\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$$

Let
$$l | m | p - 1$$
, $(\zeta_m)^{m/l} = \zeta_l$
• $\alpha_l \in \mathbb{F}_{p^l}$ and $\alpha_m \in \mathbb{F}_{p^m}$ solutions of H90 for ζ_l and ζ_m
• $\kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1$ implies $c_l = c_m$
In particular, for $m = p - 1$

$$\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$$

•
$$(\alpha_{p-1})^{p-1} = c_{p-1} = \zeta_{p-1}$$

Let
$$l | m | p - 1$$
, $(\zeta_m)^{m/l} = \zeta_l$
• $\alpha_l \in \mathbb{F}_{p^l}$ and $\alpha_m \in \mathbb{F}_{p^m}$ solutions of H90 for ζ_l and ζ_m
• $\kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1$ implies $c_l = c_m$
In particular, for $m = p - 1$

$$\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$$

STANDARD SOLUTIONS

How to define standard solutions of (H90)?

Definition (Standard solution)

Let l | p - 1 and $\alpha_l \in \mathbb{F}_{p^l}$ a solution of (H90) for $\zeta_l = (\zeta_{p-1})^{\frac{p-1}{l}}$, α_l is standard if $c_l = \zeta_{p-1}$.

Definition (Standard polynomial)

All standard solutions α_l define the same irreducible polynomial of degree *l*, we call it the **standard polynomial** of degree *l*.

Let $l \mid m \mid p - 1$

- $\blacktriangleright \zeta_l = (\zeta_m)^{m/l}$
- α_l and α_m standard solutions of (H90) for ζ_l and ζ_m

Let l | m | p - 1 $\boldsymbol{\zeta}_l = (\zeta_m)^{m/l}$ $\boldsymbol{\alpha}_l$ and $\boldsymbol{\alpha}_m$ standard solutions of (H90) for ζ_l and ζ_m $\boldsymbol{c}_l = c_m = \zeta_{p-1}$

Let
$$l | m | p - 1$$

• $\zeta_l = (\zeta_m)^{m/l}$
• α_l and α_m standard solutions of (H90) for ζ_l and ζ_m
• $c_l = c_m = \zeta_{p-1}$
• $\kappa_{l,m} = 1$

Let l | m | p - 1• $\zeta_l = (\zeta_m)^{m/l}$ • α_l and α_m standard solutions of (H90) for ζ_l and ζ_m • $c_l = c_m = \zeta_{p-1}$ • $\kappa_{l,m} = 1$ • The embedding $\alpha_l \mapsto (\alpha_m)^{m/l}$ is standard too (only

depends on ζ_{p-1}).

WHAT HAPPENS WHEN $l \nmid p - 1$?

Let
$$p \nmid l$$
 and $l \nmid p - 1$
• no *l*-th root of unity ζ_l in \mathbb{F}_p
• add them! Consider $A_l = \mathbb{F}_{p^l} \otimes \mathbb{F}_p(\zeta_l)$ instead of \mathbb{F}_{p^l}
 $(\sigma \otimes 1)(x) = (1 \otimes \zeta_l)x$ (H90')

Allombert's algorithm still works!

If $l \mid m$ and $(\zeta_m)^{m/l} = \zeta_l$

- Still possible to find standard solutions α_l, α_m of H90'
- $\kappa_{l,m} \neq 1$ but easy to compute
- **Standard embedding** from α_l and α_m

Context	Overview	Standard lattices
00000	0000	000000000

Scheme of our work

(Context		
	00000		

Overview 0000 Standard lattices

Overview 0000 Standard lattices

Context		
00000		

Context	Overview	Standard lattices
00000	0000	0000000000

SCHEME OF OUR WORK

p = 5

COMPATIBILITY AND COMPLEXITY

Proposition (Compatibility)

Let $l \mid m \mid n$ and $f : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}, g : \mathbb{F}_{p^m} \hookrightarrow \mathbb{F}_{p^n}, h : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^n}$ the standard embeddings. Then we have $g \circ f = h$.

Proposition (Complexity)

Given a collection of Conway polynomials of degree up to d, for any $l \mid m \mid p^i - 1, i \leq d$

- Computing a standard solution α_l takes $\tilde{O}(l^2)$
- Given α_l and α_m, computing the standard embedding
 f : F_{p^l} → F_{p^m} takes Õ(m²)

00000 0000 0000	Standard lattices
	00000000000

IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.

Figure: Timings for computing α_l (left, logscale), and for computing $\mathbb{F}_{p^2} \hookrightarrow \mathbb{F}_{p^l}$ (right, logscale) for p = 3.

STANDARD POLYNOMIALS

$$\begin{array}{c} x+1\\ x^3+x+1\\ x^5+x^3+1\\ x^7+x+1\\ x^9+x^7+x^4+x^2+1\\ x^{11}+x^8+x^7+x^6+x^2+x+1\\ x^{13}+x^{10}+x^5+x^3+1\\ x^{15}+x+1\\ x^{17}+x^{11}+x^{10}+x^8+x^7+x^6+x^4+x^3+x^2+x+1\\ x^{19}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^8+x^7+x^6+x^5+x^3+1\end{array}$$

Table: The ten first standard polynomials derived from Conway polynomials for p = 2.

ct	Overview	Standard lattices
Э	0000	0000000000

CONCLUSION, OPEN PROBLEMS

- We implicitly assume that we have **compatible roots** ζ (*i.e.* $\zeta_l = (\zeta_m)^{m/l}$ for $l \mid m$)
 - In practice, this is done using Conway polynomials
- ▶ With Conway polynomials up to degree *d*, we can compute embeddings to finite fields up to any degree $l | p^i 1, i \le d$
 - quasi-quadratic complexity

Open problems:

- Make this work less standard, but more practical
- Can we prove better than quasi-quadratic?
 - for the isomorphism problem (in the general case)
 - for the computations in $\overline{\mathbb{F}}_p$
- Compute (pseudo-)Conway polynomials faster

Thank you!