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CONTEXT
I Use of Computer Algebra System (CAS)
I Use of many extensions of a prime finite field Fp
I Computations in F̄p.
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EMBEDDINGS

I When l |m, we know Fpl ↪→ Fpm

I How to compute this embedding efficiently?

I Naive algorithm: if Fpl = Fp[x]/(f (x)), find a root ρ of f in
Fpm and map x̄ to ρ. Complexity strictly larger than Õ(l2).

I Lots of other solutions in the litterature:
I [Lenstra ’91]
I [Allombert ’02] Õ(l2)
I [Rains ’96]
I [Narayanan ’18]
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COMPATIBILITY

I K,L,M three finite fields with K ↪→ L ↪→M
I f : K ↪→ L, g : L ↪→M, h : K ↪→M embeddings

Compatibility:
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ENSURING COMPATIBILITY: CONWAY POLYNOMIALS

Definition (m-th Conway polynomials Cm)

I monic
I irreducible
I degree m
I primitive (i.e. its roots generate F×

pm)

I norm-compatible (i.e. Cl

(
X

pm−1
pl−1 = 0

)
= 0 mod Cm if l |m)

I Standard polynomials

I Compatible embeddings: X̄ 7→ Ȳ
pm−1
pl−1 Õ(m2)

I Hard to compute (exponential complexity)
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pl−1 Õ(m2)

I Hard to compute (exponential complexity)

5 / 20



Context Overview Standard lattices

ENSURING COMPATIBILITY: CONWAY POLYNOMIALS

Definition (m-th Conway polynomials Cm)

I monic
I irreducible
I degree m
I primitive (i.e. its roots generate F×

pm)

I norm-compatible (i.e. Cl

(
X

pm−1
pl−1 = 0

)
= 0 mod Cm if l |m)

I Standard polynomials

I Compatible embeddings: X̄ 7→ Ȳ
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ENSURING COMPATIBILITY: BOSMA, CANNON AND

STEEL

I Framework used in MAGMA
I Based on the naive embedding algorithm
I Constraints on the embedding imply that adding a new

embedding can be expensive

I Inefficient as the number of extensions grows

K1 K2 Kr
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M

. . .

I Non standard polynomials
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IDEAS

I Plugging Allombert’s embedding algorithm in Bosma,
Cannon, and Steel

I Generalizing Bosma, Cannon, and Steel
I Generalizing Conway polynomials

Goal: bring the best of both worlds
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ALLOMBERT’S EMBEDDING ALGORITHM I

I Based on Kummer theory
I For l | (p− 1), we work in Fpl , and study

σ(x) = ζlx (H90)

where (ζl)
l = 1 and ζl ∈ Fp ⊂ Fpl

I Solutions of (H90) form a Fp-vector space of dimension 1
I αl solution of (H90) generates Fpl

I (αl)
l = c ∈ Fp
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ALLOMBERT’S EMBEDDING ALGORITHM II

Input: Fpl , Fpm , with l |m | (p− 1), ζl and ζm with (ζm)m/l = ζl
Output: s ∈ Fpl , t ∈ Fpm , such that s 7→ t defines an embedding
φ : Fpl → Fpm

1. Find αl ∈ Fpl and αm ∈ Fpm , nonzero solutions of (H90) for
the roots ζl and ζm

2. Compute (αl)
l = cl and (αm)m = cm

3. Compute κl,m a l-th root of cl/cm

4. Return αl and κl,m(αm)m/l
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ALLOMBERT AND BOSMA, CANON, AND STEEL

I Need to store one constant κl,m for each pair (Fpl ,Fpm)

I The constant κl,m depends on αl and αm

We would like to:
I get rid of the constants κl,m (e.g. have κl,m = 1)
I equivalently, get "standard" solutions of (H90)

I select solutions αl, αm that always define the same
embedding

I such that the constants κl,m are well understood (e.g.
κl,m = 1)
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CAN WE HAVE κl,m = 1?

Let l |m | p− 1, (ζm)m/l = ζl

I αl ∈ Fpl and αm ∈ Fpm solutions of H90 for ζl and ζm

I κl,m = l
√

cl/cm = 1 implies cl = cm

In particular, for m = p− 1

σ(αp−1) = (αp−1)p = ζp−1αp−1

I (αp−1)p−1 = cp−1 = ζp−1

I this implies ∀l | p− 1, cl = ζp−1
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STANDARD SOLUTIONS

How to define standard solutions of (H90)?

Definition (Standard solution)
Let l | p− 1 and αl ∈ Fpl a solution of (H90) for ζl = (ζp−1)

p−1
l , αl

is standard if cl = ζp−1.

Definition (Standard polynomial)
All standard solutions αl define the same irreducible
polynomial of degree l, we call it the standard polynomial of
degree l.
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STANDARD EMBEDDINGS

Let l |m | p− 1
I ζl = (ζm)m/l

I αl and αm standard solutions of (H90) for ζl and ζm

I cl = cm = ζp−1

I κl,m = 1

I The embedding αl 7→ (αm)m/l is standard too (only
depends on ζp−1).
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WHAT HAPPENS WHEN l - p− 1?

Let p - l and l - p− 1
I no l-th root of unity ζl in Fp

I add them! Consider Al = Fpl ⊗ Fp(ζl) instead of Fpl

(σ ⊗ 1)(x) = (1⊗ ζl)x (H90’)

I Allombert’s algorithm still works!
If l |m and (ζm)m/l = ζl

I Still possible to find standard solutions αl, αm of H90’
I κl,m 6= 1 but easy to compute
I Standard embedding from αl and αm
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SCHEME OF OUR WORK
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COMPATIBILITY AND COMPLEXITY

Proposition (Compatibility)
Let l |m |n and f : Fpl ↪→ Fpm , g : Fpm ↪→ Fpn , h : Fpl ↪→ Fpn the
standard embeddings. Then we have g ◦ f = h.

Proposition (Complexity)
Given a collection of Conway polynomials of degree up to d, for any
l |m | pi − 1, i ≤ d
I Computing a standard solution αl takes Õ(l2)

I Given αl and αm, computing the standard embedding
f : Fpl ↪→ Fpm takes Õ(m2)
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IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.
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Figure: Timings for computing αl (left, logscale), and for computing
Fp2 ↪→ Fpl (right, logscale) for p = 3.
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STANDARD POLYNOMIALS

x + 1
x3 + x + 1

x5 + x3 + 1
x7 + x + 1

x9 + x7 + x4 + x2 + 1
x11 + x8 + x7 + x6 + x2 + x + 1

x13 + x10 + x5 + x3 + 1
x15 + x + 1

x17 + x11 + x10 + x8 + x7 + x6 + x4 + x3 + x2 + x + 1
x19 + x17 + x16 + x15 + x14 + x13 + x12 + x8 + x7 + x6 + x5 + x3 + 1

Table: The ten first standard polynomials derived from Conway
polynomials for p = 2.
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CONCLUSION, OPEN PROBLEMS

I We implicitly assume that we have compatible roots ζ (i.e.
ζl = (ζm)m/l for l |m)
I In practice, this is done using Conway polynomials

I With Conway polynomials up to degree d, we can compute
embeddings to finite fields up to any degree l | pi − 1, i ≤ d
I quasi-quadratic complexity

Open problems:
I Make this work less standard, but more practical
I Can we prove better than quasi-quadratic?

I for the isomorphism problem (in the general case)
I for the computations in F̄p

I Compute (pseudo-)Conway polynomials faster
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Thank you!

20 / 20


	Context
	Overview
	Standard lattices

