Lattices of compatibly embedded finite fields

Edouard Rousseau

GT BAC

December 14, 2017

Contents

The embedding problem
The problem
Description

The compatibility problem
The problem
Bosma, Cannon and Steel framework
Computing an isomorphism with a common subfield

The embedding problem

The Embedding problem

- f irreducible polynomial of degree m in $\mathbb{F}_{p}[X]$
- g irreducible polynomial of degree n in $\mathbb{F}_{p}[Y]$
- $m \mid n$
- $E=\mathbb{F}_{p}[X] /(f(X))$
- $F=\mathbb{F}_{p}[Y] /(g(Y))$

$$
E \cong \mathbb{F}_{p^{m}} \hookrightarrow \mathbb{F}_{p^{n}} \cong F
$$

- Embedding problem: how to compute the embedding from E to F ?

DESCRIPTION AND EVALUATION

Two steps:

- Description: find α_{1}, α_{2} such that
- $E=\mathbb{F}_{p}\left(\alpha_{1}\right)$
- there exists an embedding $\phi: E \rightarrow F$ mapping $\alpha_{1} \mapsto \alpha_{2}$
- Evaluation
- Compute $\phi(\gamma) \in F$ for $\gamma \in E$
- Test if $\delta \in \phi(E)$ for $\delta \in F$
- If $\delta \in \phi(E)$, compute $\phi^{-1}(\delta) \in E$

Description - Naive algorithm

Context:

$$
E=\mathbb{F}_{p}[X] /(f) \quad F=\mathbb{F}_{p}[Y] /(g)
$$

Algorithm:

- Find a root ρ of f in F
- $\alpha_{1}=\bar{X}$
- $\alpha_{2}=\rho$

Description - Allombert's Algorithm $(m \mid p-1)$

Assume $m \mid p-1$.

- $\exists \zeta \in \mathbb{F}_{p}$, primitive m-th root of unity
- Find such a ζ
- Solve $\sigma(x)=\zeta x$ in E, where $\sigma:=$ Frobenius automorphism (Hilbert 90)
- Denote by α_{1} a solution
- Solve $\sigma(y)=\zeta y$ in F
- Denote by α_{2} a solution

Facts:

- $E=\mathbb{F}_{p}\left(\alpha_{1}\right)$
- $a_{1}:=\alpha_{1}^{m} \in \mathbb{F}_{p}, a_{2}:=\alpha_{2}^{m} \in \mathbb{F}_{p}$
- a_{1} / a_{2} is a m-th power in \mathbb{F}_{p}
- Compute $c \in \mathbb{F}_{p}$ such that $c^{m}=a_{1} / a_{2}$

Take the map $\alpha_{1} \mapsto c \alpha_{2}$

DESCRIPTION - ALLOMBERT's ALGORITHM

In general:

- We do not necessarily have primitive m-th roots of unity ζ in \mathbb{F}_{p}
- We work in $E \otimes_{\mathbb{F}_{p}} C$ and $F \otimes_{\mathbb{F}_{p}} C$, where C is a finite extension of \mathbb{F}_{p} containing primitive m-th roots of unity
- We use the same kind of results to find α_{1}, α_{2}

The compatibility problem

THE COMPATIBILITY PROBLEM

Context:

- E, F, G fields
- E subfield of F and F subfield of G
- $\phi_{E \hookrightarrow F}, \phi_{F \hookrightarrow G}, \phi_{E \hookrightarrow G}$ embeddings

$$
\phi_{F \hookrightarrow G} \circ \phi_{E \hookrightarrow F} \stackrel{?}{=} \phi_{E \hookrightarrow G}
$$

The compatibility problem II

Bosma, Cannon and Steel

- Allows to work with arbitrary, user-defined finite fields
- Allows to build the embeddings in arbitrary order
- Used in MAGMA

Bosma, Cannon and Steel framework (theory)

First example

- Take $\phi_{F \hookrightarrow G}^{\prime}$ an arbitrary embedding between F and G
- Find $\sigma \in \operatorname{Gal}\left(G / \mathbb{F}_{p}\right)$ such that $\sigma \circ \phi_{F \hookrightarrow G}^{\prime} \circ \phi_{E \hookrightarrow F}=\phi_{E \hookrightarrow G}$
- Set $\phi_{F \hookrightarrow G}:=\sigma \circ \phi_{F \hookrightarrow G}^{\prime}$
- There are $|\operatorname{Gal}(F / E)|$ compatible morphisms

Bosma, CANNON AND STEEL FRAMEWORK (THEORY)

What about several subfields $E_{1}, E_{2}, \ldots, E_{r}$?

- We impose some conditions on the lattice

CE1 (Unicity) At most one morphism $\phi_{E \hookrightarrow F}$
CE2 (Reflexivity) For each $E, \phi_{E \hookrightarrow E}=\operatorname{Id}_{E}$
CE3 (Invertibility) For each pair (E, F) with $E \cong F, \phi_{E \hookrightarrow F}=\phi_{F \hookrightarrow E}^{-1}$
CE4 (Transitivity) For any triple (E, F, G) with E subfield of F and F subfield of G, if we have computed $\phi_{E \hookrightarrow F}$ and $\phi_{F \hookrightarrow G}$, then $\phi_{E \hookrightarrow G}=\phi_{F \hookrightarrow G} \circ \phi_{E \hookrightarrow F}$
CE5 (Intersections) For any triple (E, F, G) with E and F subfields of G, we have that the field $S=E \cap F$ is embedded in E and F, i.e. we have computed $\phi_{S \hookrightarrow E}$ and $\phi_{S \hookrightarrow F}$

Bosma, CANNON AND STEEL FRAMEWORK (THEORY)

- Set F^{\prime} the field generated by the fields E_{i} in F
- Set G^{\prime} the field generated by the fields E_{i} in G

Theorem
There exists a unique isomorphism $\chi: F^{\prime} \rightarrow G^{\prime}$ that is compatible with all embeddings, i.e. such that for all $i, \phi_{E_{i} \hookrightarrow G^{\prime}}=\chi \circ \phi_{E_{i} \hookrightarrow F^{\prime}}$.

Bosma, Cannon and Steel framework (theory)

- We have $\left|\operatorname{Gal}\left(F / F^{\prime}\right)\right|$ compatible morphisms

Bosma, Cannon and Steel framework

 (PRACTICE)- Use the naive embedding algorithm

- Consider α such that $F=\mathbb{F}_{p}(\alpha)$
- Take ρ a root of $\phi_{E \hookrightarrow G}\left(\operatorname{Minpoly}_{E}(\alpha)\right)$
- Map $\alpha \mapsto \rho$ and

$$
\phi_{F \hookrightarrow G}\left(\sum_{i=0}^{[F: E]-1} e_{i} \alpha^{i}\right)=\sum_{i=0}^{[F: E]-1} \phi_{E \hookrightarrow G}\left(e_{i}\right) \rho^{i}
$$

Bosma, Cannon and Steel framework (PRACTICE)

- Consider α such that $F=\mathbb{F}_{p}(\alpha)$
- Take ρ a root of $\operatorname{gcd}_{i}\left(\phi_{E_{i} \hookrightarrow G}\left(\operatorname{Minpoly}_{E_{i}}(\alpha)\right)\right)$
- Map $\alpha \mapsto \rho$

BOSMA, CANNON AND STEEL FRAMEWORK

To embed F in G :

1. For each subfield S of G, if $S \cap F$ is not embedded in S and F, if not, embed it
2. embed F in G using the method seen before
3. take the transitive closure

Bosma, Cannon and Steel framework

 Some configurations with triangles:

Bosma, Cannon and Steel framework

 Some configurations with triangles:

Bosma, Cannon and Steel framework

An example of what can happen with the intersections:

Bosma, Cannon and Steel framework

An example of what can happen with the intersections:

Bosma, Cannon and Steel framework

An example of what can happen with the intersections:

Bosma, Cannon and Steel framework

An example of what can happen with the intersections:

Bosma, Cannon and Steel framework

An example of what can happen with the intersections:

Bosma, Cannon and Steel framework

An example of what can happen with the intersections:

Bosma, Cannon and Steel framework

An example of what can happen with the intersections:

COMPUTING AN ISOMORPHISM WITH A COMMON SUBFIELD

- We want to embed E in F
- additionnal information: S is a field embedded in E and F
- We factor a degree $[E: S]$ polynomial in F, instead of a degree $\left[E: \mathbb{F}_{p}\right]$ polynomial in F.
- Several common subfields $S_{1}, S_{2}, \ldots, S_{r}$ are equivalent to the field S^{\prime} generated by the S_{i} in E

SOME QUESTIONS

- Can we use Bosma, Cannon and Steel framework with a more efficient algorithm ? (e.g. Allombert's)
- Can we use a similar common subfield trick with Allombert's algorithm ?

Thank you for your attention !

