Lattices of compatibly embedded finite fields

Edouard Rousseau

GT BAC December 14, 2017

CONTENTS

The embedding problem The problem Description

The compatibility problem The problem Bosma, Cannon and Steel framework Computing an isomorphism with a common subfield

The embedding problem

THE EMBEDDING PROBLEM

- *f* irreducible polynomial of degree *m* in $\mathbb{F}_p[X]$
- *g* irreducible polynomial of degree *n* in $\mathbb{F}_p[Y]$
- $\blacktriangleright m \mid n$
- $\blacktriangleright E = \mathbb{F}_p[X]/(f(X))$
- $F = \mathbb{F}_p[Y]/(g(Y))$

$$E \cong \mathbb{F}_{p^m} \hookrightarrow \mathbb{F}_{p^n} \cong F$$

• **Embedding problem:** how to compute the embedding from *E* to *F* ?

DESCRIPTION AND EVALUATION

Two steps:

- Description: find α_1, α_2 such that
 - $E = \mathbb{F}_p(\alpha_1)$
 - *there exists* an embedding $\phi : E \to F$ mapping $\alpha_1 \mapsto \alpha_2$
- Evaluation
 - Compute $\phi(\gamma) \in F$ for $\gamma \in E$
 - Test if $\delta \in \phi(E)$ for $\delta \in F$
 - If $\delta \in \phi(E)$, compute $\phi^{-1}(\delta) \in E$

DESCRIPTION - NAIVE ALGORITHM

Context:

$$E = \mathbb{F}_p[X]/(f)$$
 $F = \mathbb{F}_p[Y]/(g)$

Algorithm:

- Find a root ρ of f in F
- $\blacktriangleright \ \alpha_1 = \overline{X}$

$$\blacktriangleright \ \alpha_2 = \rho$$

Description - Allombert's Algorithm (m | p - 1)

Assume $m \mid p - 1$.

- ► $\exists \zeta \in \mathbb{F}_p$, primitive *m*-th root of unity
- Find such a ζ
- Solve σ(x) = ζx in E, where σ := Frobenius automorphism (Hilbert 90)
 - Denote by α_1 a solution

Solve
$$\sigma(y) = \zeta y$$
 in *F*

• Denote by α_2 a solution

Facts:

$$\blacktriangleright \ E = \mathbb{F}_p(\alpha_1)$$

- $a_1 := \alpha_1^m \in \mathbb{F}_p, a_2 := \alpha_2^m \in \mathbb{F}_p$
- a_1/a_2 is a *m*-th power in \mathbb{F}_p
 - Compute $c \in \mathbb{F}_p$ such that $c^m = a_1/a_2$

Take the map $\alpha_1 \mapsto c\alpha_2$

DESCRIPTION - ALLOMBERT'S ALGORITHM

In general:

- We do not necessarily have primitive *m*-th roots of unity ζ in F_p
- ▶ We work in $E \otimes_{\mathbb{F}_p} C$ and $F \otimes_{\mathbb{F}_p} C$, where *C* is a finite extension of \mathbb{F}_p containing primitive *m*-th roots of unity
- We use the same kind of results to find α_1 , α_2

The compatibility problem

THE COMPATIBILITY PROBLEM

Context:

- \blacktriangleright *E*, *F*, *G* fields
- *E* subfield of *F* and *F* subfield of *G*
- $\phi_{E \hookrightarrow F}, \phi_{F \hookrightarrow G}, \phi_{E \hookrightarrow G}$ embeddings

$$\phi_{F \hookrightarrow G} \circ \phi_{E \hookrightarrow F} \stackrel{?}{=} \phi_{E \hookrightarrow G}$$

THE COMPATIBILITY PROBLEM II

BOSMA, CANNON AND STEEL

- Allows to work with arbitrary, user-defined finite fields
- Allows to build the embeddings in arbitrary order
- Used in MAGMA

First example

- Take $\phi'_{F \hookrightarrow G}$ an arbitrary embedding between *F* and *G*
- Find $\sigma \in \text{Gal}(G/\mathbb{F}_p)$ such that $\sigma \circ \phi'_{F \hookrightarrow G} \circ \phi_{E \hookrightarrow F} = \phi_{E \hookrightarrow G}$
- Set $\phi_{F \hookrightarrow G} := \sigma \circ \phi'_{F \hookrightarrow G}$
- ► There are | Gal(*F*/*E*)| compatible morphisms

What about several subfields E_1, E_2, \ldots, E_r ?

- We impose some conditions on the lattice
 - **CE1** (Unicity) At most one morphism $\phi_{E \hookrightarrow F}$
 - CE2 (Reflexivity) For each E, $\phi_{E \hookrightarrow E} = \text{Id}_E$
 - CE3 (Invertibility) For each pair (E, F) with $E \cong F$, $\phi_{E \hookrightarrow F} = \phi_{F \hookrightarrow E}^{-1}$
 - CE4 (Transitivity) For any triple (E, F, G) with E subfield of Fand F subfield of G, if we have computed $\phi_{E \hookrightarrow F}$ and $\phi_{F \hookrightarrow G}$, then $\phi_{E \hookrightarrow G} = \phi_{F \hookrightarrow G} \circ \phi_{E \hookrightarrow F}$
 - CE5 (Intersections) For any triple (E, F, G) with E and F subfields of G, we have that the field $S = E \cap F$ is embedded in E and F, *i.e.* we have computed $\phi_{S \hookrightarrow E}$ and $\phi_{S \hookrightarrow F}$

- ► Set *F*′ the field generated by the fields *E*_{*i*} in *F*
- ▶ Set *G*′ the field generated by the fields *E*_{*i*} in *G*

Theorem

There exists a unique isomorphism $\chi : F' \to G'$ that is compatible with all embeddings, i.e. such that for all $i, \phi_{E_i \hookrightarrow G'} = \chi \circ \phi_{E_i \hookrightarrow F'}$.

• We have $|\operatorname{Gal}(F/F')|$ compatible morphisms

BOSMA, CANNON AND STEEL FRAMEWORK (PRACTICE)

Use the naive embedding algorithm

- Consider α such that $F = \mathbb{F}_p(\alpha)$
- Take ρ a root of $\phi_{E \hookrightarrow G}(\text{Minpoly}_E(\alpha))$
- Map $\alpha \mapsto \rho$ and

$$\phi_{F \hookrightarrow G}(\sum_{i=0}^{[F:E]-1} e_i \alpha^i) = \sum_{i=0}^{[F:E]-1} \phi_{E \hookrightarrow G}(e_i) \rho^i$$

BOSMA, CANNON AND STEEL FRAMEWORK (PRACTICE)

- Consider α such that $F = \mathbb{F}_p(\alpha)$
- Take ρ a root of $gcd_i(\phi_{E_i \hookrightarrow G}(Minpoly_{E_i}(\alpha)))$
- Map $\alpha \mapsto \rho$

BOSMA, CANNON AND STEEL FRAMEWORK

To embed *F* in *G*:

- 1. For each subfield *S* of *G*, if $S \cap F$ is not embedded in *S* and *F*, if not, embed it
- 2. embed *F* in *G* using the method seen before
- 3. take the transitive closure

BOSMA, CANNON AND STEEL FRAMEWORK

Some configurations with triangles:

BOSMA, CANNON AND STEEL FRAMEWORK

Some configurations with triangles:

COMPUTING AN ISOMORPHISM WITH A COMMON SUBFIELD

- We want to embed *E* in *F*
 - ▶ additionnal information: *S* is a field embedded in *E* and *F*
- ► We factor a degree [E : S] polynomial in F, instead of a degree [E : ℝ_p] polynomial in F.
- Several common subfields S₁, S₂, ..., S_r are equivalent to the field S' generated by the S_i in E

SOME QUESTIONS

- Can we use Bosma, Cannon and Steel framework with a more efficient algorithm ? (*e.g.* Allombert's)
- Can we use a similar common subfield trick with Allombert's algorithm ?

Thank you for your attention !