Efficient Arithmetic of Finite Field Extensions

Édouard Rousseau

July 12,2021
PhD Defense

Introduction

What are finite fields?

- In mathematics, we study sets of numbers:
- The set of natural numbers $\mathbb{N}: 0,1,2,3, \ldots$
- The set of integers \mathbb{Z} : $\ldots,-2,-1,0,1,2, \ldots$
- The set of rational fractions $\mathbb{Q}: 0,1, \frac{1}{2}, \frac{1}{3},-\frac{2}{7}, \ldots$
- The set of real numbers $\mathbb{R}: 0,1, \frac{1}{2},-\frac{2}{7}, \sqrt{2}, \pi, \ldots$
- and operations between these numbers:
- $1+2$ in \mathbb{N}
- $3-(-2) \quad$ in \mathbb{Z}
- $5 \times \frac{2}{3}$ in \mathbb{Q}
- $\sqrt{2} / 3$ in \mathbb{R}
- A field is a set of numbers with operations,,$+- \times, /$
- It is called finite when it contains only a finite number of elements

ARITHMETIC OF EXTENSIONS

- The simplest example of finite field is $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=\{0,1, \ldots, p-1\}$, where all the operations are taken modulo a prime number p.
- \mathbb{F}_{p} has p elements
- There exists exactly one finite field of size p^{k} for all $k \geq 1$
- The field of size $p^{k}, \mathbb{F}_{p^{k}}$, is an extension of \mathbb{F}_{p}
- We have $\mathbb{F}_{p} \subset \mathbb{F}_{p^{k}}$
- We are interested in computer algebra
- Particularly in the arithmetic of $\mathbb{F}_{p^{k}}$, i.e. how to perform operations in $\mathbb{F}_{p^{k}}$ efficiently, on a computer

Applications of Finite fields

Finite fields are widely used in many areas:

- number theory
- algebraic geometry
- coding theory
- cryptography

GOALS

- Improve the arithmetic in finite field extensions
- Two directions of study
single extension

\sim efficient operations in one given field
many extensions

\sim efficient morphisms between fields

CONTRIBUTIONS

Published in the International Symposium on Symbolic and Algebraic Computation (ISSAC):

- Lattices of compatibly embedded finite fields in Nemo/Flint, Luca De Feo, Hugues Randriambololona, and É. R., 2018
- Standard lattices of compatibly embedded finite fields, Luca De Feo, Hugues Randriambololona and E. R., 2019
Published in the International Workshop on the Arithmetic of Finite Fields (WAIFI):
- Trisymmetric multiplication formulae in finite fields, Hugues Randriambololona and É. R., 2020

Single extension

Finite field arithmetic

Notation: $\mathbb{F}_{p^{k}}$ denotes the finite field with p^{k} elements

$$
\mathbb{F}_{p^{k}} \cong \mathbb{F}_{p}[X] /(P(X))
$$

- $P \in \mathbb{F}_{p}[X]$ is an irreducible polynomial of degree k

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{k-1}}\right)$
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{k-1}\right)$

Finite field arithmetic

Notation: $\mathbb{F}_{p^{k}}$ denotes the finite field with p^{k} elements

$$
\mathbb{F}_{p^{k}} \cong \mathbb{F}_{p}[X] /(P(X))
$$

- $P \in \mathbb{F}_{p}[X]$ is an irreducible polynomial of degree k

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- fast, but only possible for small fields
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{k-1}}\right)$
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{k-1}\right)$

Finite field arithmetic

Notation: $\mathbb{F}_{p^{k}}$ denotes the finite field with p^{k} elements

$$
\mathbb{F}_{p^{k}} \cong \mathbb{F}_{p}[X] /(P(X))
$$

- $P \in \mathbb{F}_{p}[X]$ is an irreducible polynomial of degree k

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- fast, but only possible for small fields
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{k-1}}\right)$
- fast Frobenius evaluation but slow multiplication
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{k-1}\right)$

Finite field arithmetic

Notation: $\mathbb{F}_{p^{k}}$ denotes the finite field with p^{k} elements

$$
\mathbb{F}_{p^{k}} \cong \mathbb{F}_{p}[X] /(P(X))
$$

- $P \in \mathbb{F}_{p}[X]$ is an irreducible polynomial of degree k

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- fast, but only possible for small fields
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{k-1}}\right)$
- fast Frobenius evaluation but slow multiplication
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{k-1}\right)$
- commonly used representation, easy to construct
- multiplication slower than addition

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive (${ }^{-}$
- additions, scalar multiplications: cheap ©

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
- Karatsuba (1962)

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive ${ }^{(-)}$
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive ©
- additions, scalar multiplications: cheap ()
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques
- Schönhage-Strassen (1971)

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive © ${ }^{-}$
- additions, scalar multiplications: cheap ()
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques
- Schönhage-Strassen (1971)
- ...

Motivation

- Computations in an extension $\mathbb{F}_{p^{k}}$
- multiplications: expensive ©
- additions, scalar multiplications: cheap ()
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques
- Schönhage-Strassen (1971)
- $O(k \log k)$ algorithm [Harvey, Van Der Hoeven '19]

Models of complexity

\mathcal{A} an \mathbb{F}_{p}-algebra

- algebraic complexity: we count all operations,$+ \times$ in \mathbb{F}_{p}
- bilinear complexity: we count only the multiplications
- nice results with polynomials: Karatsuba's algorithm
- and with matrices: Strassen's algorithm

When $\mathcal{A}=\mathbb{F}_{p^{k}}$:

- theoretical interest
- links with coding theory
- links with algebraic geometry

BILINEAR COMPLEXITY: INTUITION

- $\mathbb{F}_{p^{k}}$ an extension of \mathbb{F}_{p}
- bilinear complexity: number of subproducts in \mathbb{F}_{p} needed to compute a product in $\mathbb{F}_{p^{k}}$
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+a_{1} b_{1} X^{2}
\end{gathered}
$$

BILINEAR COMPLEXITY: INTUITION

- $\mathbb{F}_{p^{k}}$ an extension of \mathbb{F}_{p}
- bilinear complexity: number of subproducts in \mathbb{F}_{p} needed to compute a product in $\mathbb{F}_{p^{k}}$
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
\mathbf{a}_{0} \mathbf{b}_{0}+\left(\mathbf{a}_{0} \mathbf{b}_{1}+\mathbf{a}_{1} \mathbf{b}_{0}\right) X+\mathbf{a}_{1} \mathbf{b}_{1} X^{2}
\end{gathered}
$$

BILINEAR COMPLEXITY: INTUITION

- $\mathbb{F}_{p^{k}}$ an extension of \mathbb{F}_{p}
- bilinear complexity: number of subproducts in \mathbb{F}_{p} needed to compute a product in $\mathbb{F}_{p^{k}}$
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
c_{0}+\left(c_{2}-c_{1}-c_{0}\right) X+c_{1} X^{2}
\end{gathered}
$$

with

$$
\left\{\begin{array}{l}
c_{0}=a_{0} b_{0} \\
c_{1}=a_{1} b_{1} \\
c_{2}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{array}\right.
$$

BILINEAR COMPLEXITY: INTUITION

- $\mathbb{F}_{p^{k}}$ an extension of \mathbb{F}_{p}
- bilinear complexity: number of subproducts in \mathbb{F}_{p} needed to compute a product in $\mathbb{F}_{p^{k}}$
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
c_{0}+\left(\mathbf{c}_{2}-\mathbf{c}_{1}-\mathbf{c}_{0}\right) X+\mathbf{c}_{1} X^{2}
\end{gathered}
$$

with

$$
\left\{\begin{aligned}
c_{0} & =a_{0} b_{0} \\
c_{1} & =a_{1} b_{1} \\
c_{2} & =\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{aligned}\right.
$$

BILINEAR COMPLEXITY: INTUITION

- $\mathbb{F}_{p^{k}}$ an extension of \mathbb{F}_{p}
- bilinear complexity: number of subproducts in \mathbb{F}_{p} needed to compute a product in $\mathbb{F}_{p^{k}}$
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
c_{0}+\left(c_{2}-\mathbf{c}_{1}-\mathfrak{c}_{0}\right) X+\mathbf{c}_{1} X^{2}
\end{gathered}
$$

with

$$
\left\{\begin{array}{l}
c_{0}=a_{0} b_{0} \\
c_{1}=a_{1} b_{1} \\
c_{2}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{array}\right.
$$

- © Hard to compute the bilinear complexity of a product: unkwown even for the 3×3 matrix product

Complexity of Karatsuba's algorithm

COMPLEXITY OF KARATSUBA'S ALGORITHM

- Degree 2: 3 multiplications instead of 4

Complexity of Karatsuba's algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy

Complexity of Karatsuba's algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's Algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

BILINEAR COMPLEXITY: DEFINITION

Definition

The bilinear complexity of the product in $\mathbb{F}_{p^{k}}$ is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathbb{F}_{p^{k}}$

$$
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}
$$

with φ_{j}, ψ_{j} linear forms and α_{j} elements of $\mathbb{F}_{p^{k}}$.

BILINEAR COMPLEXITY: DEFINITION

Definition

The bilinear complexity of the product in $\mathbb{F}_{p^{k}}$ is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathbb{F}_{p^{k}}$

$$
x y=\sum_{j=1}^{r} \varphi_{\mathbf{j}}(\mathbf{x}) \psi_{\mathbf{j}}(\mathbf{y}) \cdot \alpha_{j}
$$

with φ_{j}, ψ_{j} linear forms and α_{j} elements of $\mathbb{F}_{p^{k}}$.

- $\varphi_{j}(x)$: linear combination of the coordinates x_{i} of x
- $\psi_{j}(y)$: linear combination of the coordinates y_{i} of y

BILINEAR COMPLEXITY: DEFINITION

Definition

The bilinear complexity of the product in $\mathbb{F}_{p^{k}}$ is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathbb{F}_{p^{k}}$

$$
x y=\sum_{j=1}^{r} \varphi_{\mathbf{j}}(\mathbf{x}) \psi_{\mathbf{j}}(\mathbf{y}) \cdot \alpha_{j}
$$

with φ_{j}, ψ_{j} linear forms and α_{j} elements of $\mathbb{F}_{p^{k}}$.

- $\varphi_{j}(x)$: linear combination of the coordinates x_{i} of x
- $\psi_{j}(y)$: linear combination of the coordinates y_{i} of y

Notations and questions

- $\mu_{p}(k)=$ bilinear complexity of the product in $\mathbb{F}_{p^{k}}$

Two independent questions:

- What is the asymptotic behaviour of $\mu_{p}(k)$?
- Can we find values $\mu_{p}(k)$ for small k ?

Notations and questions

- $\mu_{p}(k)=$ bilinear complexity of the product in $\mathbb{F}_{p^{k}}$

Two independent questions:

- What is the asymptotic behaviour of $\mu_{p}(k)$?
- $\mu_{p}(k)$ is linear in k
- Can we find values $\mu_{p}(k)$ for small k ?

Notations and questions

- $\mu_{p}(k)=$ bilinear complexity of the product in $\mathbb{F}_{p^{k}}$

Two independent questions:

- What is the asymptotic behaviour of $\mu_{p}(k)$?
- $\mu_{p}(k)$ is linear in k
- Evaluation-interpolation techniques:
- Can we find values $\mu_{p}(k)$ for small k ?

Notations and QUESTIONS

- $\mu_{p}(k)=$ bilinear complexity of the product in $\mathbb{F}_{p^{k}}$

Two independent questions:

- What is the asymptotic behaviour of $\mu_{p}(k)$?
- $\mu_{p}(k)$ is linear in k
- Evaluation-interpolation techniques:
- [Chudnovsky-Chudnovsky '87]
- [Shparlinski-Tsfasman-Vladut '92]
- [Ballet '99]
- [Randriambololona '12]
- ...
- Can we find values $\mu_{p}(k)$ for small k ?

Notations and Questions

- $\mu_{p}(k)=$ bilinear complexity of the product in $\mathbb{F}_{p^{k}}$

Two independent questions:

- What is the asymptotic behaviour of $\mu_{p}(k)$?
- $\mu_{p}(k)$ is linear in k
- Evaluation-interpolation techniques:
- [Chudnovsky-Chudnovsky '87]
- [Shparlinski-Tsfasman-Vladut '92]
- [Ballet '99]
- [Randriambololona '12]
- ...
- Can we find values $\mu_{p}(k)$ for small k ?
- Clever exhaustive search [BDEZ '12] [Covanov '18]

SYMMETRIC DECOMPOSITIONS

Classic decompositions
$x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}$

Symmetric decompositions
$y x=x y=\sum_{j=1}^{r} \varphi_{j}(x) \varphi_{j}(y) \cdot \alpha_{j}$

SYMMETRIC DECOMPOSITIONS

Classic decompositions
$x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}$

Symmetric decompositions
$y x=x y=\sum_{j=1}^{r} \varphi_{\mathrm{j}}(x) \varphi_{\mathbf{j}}(y) \cdot \alpha_{j}$

SYMMETRIC DECOMPOSITIONS

$$
\begin{array}{c|c}
\text { Classic decompositions } & \text { Symmetric decompositions } \\
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j} & y x=x y=\sum_{j=1}^{r} \varphi_{\mathrm{j}}(x) \varphi_{\mathrm{j}}(y) \cdot \alpha_{j}
\end{array}
$$

Notation: for $\mathbb{F}_{p^{k}}$, we note $\mu_{p}^{\text {sym }}(k)$ the minimal length r in a symmetric decomposition

SYMMETRIC DECOMPOSITIONS

$$
\begin{array}{c|c}
\text { Classic decompositions } & \text { Symmetric decompositions } \\
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j} & y x=x y=\sum_{j=1}^{r} \varphi_{\mathrm{j}}(x) \varphi_{\mathrm{j}}(y) \cdot \alpha_{j}
\end{array}
$$

Notation: for $\mathbb{F}_{p^{k}}$, we note $\mu_{p}^{\text {sym }}(k)$ the minimal length r in a symmetric decomposition

- Asymptotics: $\mu_{p}^{\text {sym }}(k)$ is linear in k

SYMMETRIC DECOMPOSITIONS

$$
\begin{array}{c|c}
\text { Classic decompositions } & \text { Symmetric decompositions } \\
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j} & y x=x y=\sum_{j=1}^{r} \varphi_{\mathbf{j}}(x) \varphi_{\mathbf{j}}(y) \cdot \alpha_{j}
\end{array}
$$

Notation: for $\mathbb{F}_{p^{k}}$, we note $\mu_{p}^{\text {sym }}(k)$ the minimal length r in a symmetric decomposition

- Asymptotics: $\mu_{p}^{\text {sym }}(k)$ is linear in k
- Small values: smaller search space \leadsto faster algorithms

EVEN MORE SYMMETRY

- every linear form $\varphi \in\left(\mathbb{F}_{p^{k}}\right)^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^{k}}$, with Tr the trace of $\mathbb{F}_{p^{k}} / \mathbb{F}_{p}$
- we can rewrite the formula

$$
x y=\sum_{j=1}^{r} \varphi_{j}(x) \varphi_{j}(y) \cdot \beta_{j}
$$

EVEN MORE SYMMETRY

- every linear form $\varphi \in\left(\mathbb{F}_{p^{k}}\right)^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^{k}}$, with Tr the trace of $\mathbb{F}_{p^{k}} / \mathbb{F}_{p}$
- we can rewrite the formula

$$
x y=\sum_{j=1}^{r} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \beta_{j}
$$

EVEN MORE SYMMETRY

- every linear form $\varphi \in\left(\mathbb{F}_{p^{k}}\right)^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^{k}}$, with Tr the trace of $\mathbb{F}_{p^{k}} / \mathbb{F}_{p}$
- we can rewrite the formula, and even ask $\beta_{j}=\lambda_{j} \alpha_{j}$

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \alpha_{j}
$$

with $\lambda_{j} \in \mathbb{F}_{p}$ scalars

EVEN MORE SYMMETRY

- every linear form $\varphi \in\left(\mathbb{F}_{p^{k}}\right)^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^{k}}$, with Tr the trace of $\mathbb{F}_{p^{k}} / \mathbb{F}_{p}$
- we can rewrite the formula, and even ask $\beta_{j}=\lambda_{j} \alpha_{j}$

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{\mathrm{j}} x\right) \operatorname{Tr}\left(\alpha_{\mathrm{j}} y\right) \cdot \alpha_{\mathrm{j}}
$$

with $\lambda_{j} \in \mathbb{F}_{p}$ scalars

- we call these formulae trisymmetric decompositions

EVEN MORE SYMMETRY

- every linear form $\varphi \in\left(\mathbb{F}_{p^{k}}\right)^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^{k}}$, with Tr the trace of $\mathbb{F}_{p^{k}} / \mathbb{F}_{p}$
- we can rewrite the formula, and even ask $\beta_{j}=\lambda_{j} \alpha_{j}$

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{\mathrm{j}} x\right) \operatorname{Tr}\left(\alpha_{\mathrm{j}} y\right) \cdot \alpha_{\mathrm{j}}
$$

with $\lambda_{j} \in \mathbb{F}_{p}$ scalars

- we call these formulae trisymmetric decompositions
- we note $\mu_{p}^{\text {tri }}(k)$ the minimal r in such formulae

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

- $\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$
- $x, y \in \mathbb{F}_{3^{2}}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

- $\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$
- $x, y \in \mathbb{F}_{3^{2}}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$
$\left(x_{0}+x_{1} \zeta\right)\left(y_{0}+y_{1} \zeta\right)=\left(x_{0} y_{0}+x_{1} y_{1}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) \zeta$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

- $\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$
- $x, y \in \mathbb{F}_{3^{2}}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$

$$
\begin{aligned}
&\left(x_{0}+x_{1} \zeta\right)\left(y_{0}+y_{1} \zeta\right)=\left(x_{0} y_{0}+x_{1} y_{1}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) \zeta \\
& x y=-\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1-\operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\
&+\operatorname{Tr}((\zeta-1) \times x) \operatorname{Tr}((\zeta-1) \times y) \cdot(\zeta-1)
\end{aligned}
$$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

- $\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$
- $x, y \in \mathbb{F}_{3^{2}}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$

$$
\begin{aligned}
&\left(x_{0}+x_{1} \zeta\right)\left(y_{0}+y_{1} \zeta\right)=\left(x_{0} y_{0}+x_{1} y_{1}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) \zeta \\
& x y=-\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1-\operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\
&+\operatorname{Tr}((\zeta-1) \times x) \operatorname{Tr}((\zeta-1) \times y) \cdot(\zeta-1)
\end{aligned}
$$

with

$$
\begin{cases}\operatorname{Tr}(x) \operatorname{Tr}(y) & =\left(x_{0}-x_{1}\right)\left(y_{0}-y_{1}\right) \\ \operatorname{Tr}((\zeta-1) x) \operatorname{Tr}((\zeta-1) y) & =\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right) \\ \operatorname{Tr}(\zeta x) \operatorname{Tr}(\zeta y) & =x_{0} y_{0}\end{cases}
$$

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{p}(k) \leq \mu_{p}^{\mathrm{sym}}(k) \leq \mu_{p}^{\mathrm{tri}}(k)
$$

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{p}(k) \underset{?}{<} \mu_{p}^{\mathrm{sym}}(k) \underset{?}{<} \mu_{p}^{\mathrm{tri}}(k)
$$

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{p}(k) \underset{?}{<} \mu_{p}^{\mathrm{sym}}(k) \underset{?}{<} \mu_{p}^{\operatorname{tri}}(k)
$$

Proposition (Randriambololona, '14)
Tri-symmetric decompositions always exist, except for $p=2, m \geq 3$.

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{p}(k) \underset{?}{<} \mu_{p}^{\mathrm{sym}}(k) \underset{?}{<} \mu_{p}^{\mathrm{tri}}(k)
$$

Proposition (Randriambololona, '14)
Tri-symmetric decompositions always exist, except for $p=2, m \geq 3$.
Results from [Randriambololona, R. '20]:

- Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in $\mathbb{F}_{p^{k}}$

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{p}(k) \underset{?}{<} \mu_{p}^{\mathrm{sym}}(k) \underset{?}{<} \mu_{p}^{\mathrm{tri}}(k)
$$

Proposition (Randriambololona, '14)
Tri-symmetric decompositions always exist, except for $p=2, m \geq 3$.
Results from [Randriambololona, R. '20]:

- Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in $\mathbb{F}_{p^{k}}$
- Corollary: $\mu_{p}^{\text {tri }}(k)$ is also linear in k

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{p}(k) \underset{?}{<} \mu_{p}^{\mathrm{sym}}(k) \underset{?}{<} \mu_{p}^{\mathrm{tri}}(k)
$$

Proposition (Randriambololona, '14)
Tri-symmetric decompositions always exist, except for $p=2, m \geq 3$.
Results from [Randriambololona, R. '20]:

- Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in $\mathbb{F}_{p^{k}}$
- Corollary: $\mu_{p}^{\text {tri }}(k)$ is also linear in k
- Small values: usual algorithms do not work

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{p}(k) \underset{?}{<} \mu_{p}^{\mathrm{sym}}(k) \underset{?}{<} \mu_{p}^{\mathrm{tri}}(k)
$$

Proposition (Randriambololona, '14)
Tri-symmetric decompositions always exist, except for $p=2, m \geq 3$.
Results from [Randriambololona, R. '20]:

- Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in $\mathbb{F}_{p^{k}}$
- Corollary: $\mu_{p}^{\text {tri }}(k)$ is also linear in k
- Small values: usual algorithms do not work
- We provide an ad hoc exhaustive search algorithm

Partial conclusion

Results:

- Linearity of the symmetric multilinear complexity
- Linearity of the trisymmetric complexity
- New algorithm to find trisymmetric decompositions

PARTIAL CONCLUSION

Results:

- Linearity of the symmetric multilinear complexity
- Linearity of the trisymmetric complexity
- New algorithm to find trisymmetric decompositions

Future work:

- Find better bounds for the linearity of $\mu_{p}^{\text {tri }}$
- Find algorithms exploiting the symmetries in the trisymmetric decompositions

Many extensions

CONTEXT

- Use of Computer Algebra System (CAS)
- Use of many extensions of a prime finite field \mathbb{F}_{p}
- Computations in $\overline{\mathbb{F}}_{p}$.

CONTEXT

- Use of Computer Algebra System (CAS)
- Use of many extensions of a prime finite field \mathbb{F}_{p}
- Computations in $\overline{\mathbb{F}}_{p}$.

Embeddings

- When $k \mid l$, we know $\mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{l}}$
- How to compute an embedding efficiently?
- There are several embeddings, how to choose?
- Naive algorithm: if $\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(P(x))$, find a root ρ of P in $\mathbb{F}_{p^{l}}$ and map \bar{x} to ρ. Complexity strictly larger than $\tilde{O}\left(k^{2}\right)$.
- Lots of other solutions in the litterature:
- [Lenstra '91]
- [Allombert '02]
- [Rains '96]
- [Narayanan '18]

COMPATIBILITY

$-\mathbb{F}_{p^{k}}, \mathbb{F}_{p^{l}}, \mathbb{F}_{p^{m}}$ three finite fields with $k|l| m$
$\triangleright f: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{l}}, g: \mathbb{F}_{p^{l}} \hookrightarrow \mathbb{F}_{p^{m}}, h: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{m}}$ embeddings

Compatibility:

COMPATIBILITY

$-\mathbb{F}_{p^{k}}, \mathbb{F}_{p^{l}}, \mathbb{F}_{p^{m}}$ three finite fields with $k|l| m$
$\triangleright f: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{l}}, g: \mathbb{F}_{p^{l}} \hookrightarrow \mathbb{F}_{p^{m}}, h: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{m}}$ embeddings

Compatibility:

COMPATIBILITY

$-\mathbb{F}_{p^{k}}, \mathbb{F}_{p^{l}}, \mathbb{F}_{p^{m}}$ three finite fields with $k|l| m$
$\triangleright f: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{l}}, g: \mathbb{F}_{p^{l}} \hookrightarrow \mathbb{F}_{p^{m}}, h: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{m}}$ embeddings

Compatibility:


```
In: p = 17; Fp = GF (p); FpX.<x> = Fp[]
    # We create finite fields of degree 12, 24, 48
    P12, P24 = x^12 + x + 2, x^24 + x^^2 + 2*x + 7
    P48 = x^48 + x^2 + 2*x + 6
    GFp12 = FiniteField(p^12, 'x12', modulus=P12)
    GFp24 = FiniteField(p^24, 'x24', modulus=P24)
    GFp48 = FiniteField(p^48, 'x48', modulus=P48)
    # We (naively) compute the roots we need
    a = P12.any_root(GFp24) # Image of 'x12' in GFp24
    b = P24.any_root(GFp48) # Image of 'x24' in GFp48
    c = P12.any_root(GFp48) # Image of 'x12' in GFp48
    a # We print 'a'
Out: 6*x24^23 + 15*x24^22 + ... + 12*x24 + 16
    # We map 'x24' to 'b'
In: c == a.polynomial() (b)
Out: False
```

 \(g \circ f \stackrel{?}{=} h\)

Ensuring compatibility: Conway polynomials

Definition (l-th Conway polynomials C_{l})

- degree l, irreducible, monic
- primitive (i.e. its roots generate $\mathbb{F}_{p^{\prime}}$)
- norm-compatible (i.e. $C_{k}\left(X^{\frac{p^{l}-1}{p^{k}-1}}\right)=0 \bmod C_{l}$ if $\left.k \mid l\right)$

Ensuring compatibility: Conway polynomials

Definition (l-th Conway polynomials C_{l})

- degree l, irreducible, monic
- primitive (i.e. its roots generate $\mathbb{F}_{p^{\prime}}$)
- norm-compatible (i.e. $C_{k}\left(X^{\frac{p^{l}-1}{p^{k}-1}}\right)=0 \bmod C_{l}$ if $\left.k \mid l\right)$
- Standard polynomials

Ensuring compatibility: Conway polynomials

Definition (l-th Conway polynomials C_{l})

- degree l, irreducible, monic
- primitive (i.e. its roots generate $\mathbb{F}_{p^{\prime}}$)
- norm-compatible (i.e. $C_{k}\left(X^{\frac{p^{l}-1}{p^{k}-1}}\right)=0 \bmod C_{l}$ if $\left.k \mid l\right)$
- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^{l}-1}{p^{k}-1}} \quad \tilde{O}\left(l^{2}\right)$

Ensuring compatibility: Conway polynomials

Definition (l-th Conway polynomials C_{l})

- degree l, irreducible, monic
- primitive (i.e. its roots generate $\mathbb{F}_{p^{\prime}}$)
- norm-compatible (i.e. $C_{k}\left(X^{\frac{p^{l}-1}{p^{k}-1}}\right)=0 \bmod C_{l}$ if $\left.k \mid l\right)$
- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^{l}-1}{p^{l}-1}} \quad \tilde{O}\left(l^{2}\right)$
- Hard to compute (exponential complexity)

Ensuring compatibility: Bosma, Cannon and SteEl

- Framework originally used in MAGMA
- Based on the naive embedding algorithm
- Allows user-defined finite fields
- Computations made on the fly

COMMON SUBFIELD

- Generalization of the naive algorithm

- Consider α such that $\mathbb{F}_{p^{l}}=\mathbb{F}_{p}(\alpha)$
- Take ρ a root of $h\left(\operatorname{minpoly}_{\mathbb{F}_{p^{k}}}(\alpha)\right)$
- Map $\alpha \mapsto \rho$

We obtain $h=g \circ f$

SEVERAL SUBFIELDS

- Consider α such that $\mathbb{F}_{p^{l}}=\mathbb{F}_{p}(\alpha)$
- Take ρ a root of $\operatorname{gcd}_{i}\left(h_{i}\left(\operatorname{minpoly}_{\mathbb{F}_{p_{i}}}(\alpha)\right)\right)$
- Map $\alpha \mapsto \rho$
- This gives an embedding compatible with all subfields

IMPLICIT ISOMORPHISMS

From implicit isomorphisms come compatibility conditions

IMPLICIT ISOMORPHISMS

From implicit isomorphisms come compatibility conditions

IMPLICIT ISOMORPHISMS

From implicit isomorphisms come compatibility conditions

COMPUTING THE INTERSECTIONS

An example of what can happen with the intersections:

COMPUTING THE INTERSECTIONS

An example of what can happen with the intersections:

COMPUTING THE INTERSECTIONS

An example of what can happen with the intersections:

COMPUTING THE INTERSECTIONS

An example of what can happen with the intersections:

COMPUTING THE INTERSECTIONS

An example of what can happen with the intersections:

COMPUTING THE INTERSECTIONS

An example of what can happen with the intersections:

COMPUTING THE INTERSECTIONS

An example of what can happen with the intersections:

Results

- Following [De Feo, Randriambololona, R. '18], Bosma-Canon-Steel framework is now part of the free Computer Algebra System Nemo
- It is practical but
- based on the naive embedding algorithm
\leadsto superquadratic complexity
- adding an extension is quadratic in the size of the lattice

Goals:

- Change the embedding algorithm
- Lessen the cost of adding an extension

IDEAS

- Plugging Allombert's embedding algorithm in Bosma, Cannon, and Steel
- Generalizing Bosma, Cannon, and Steel
- Generalizing Conway polynomials

Bring the best of both worlds!

ALLOMBERT'S EMBEDDING ALGORITHM

- Based on Kummer theory
- For $k \mid(p-1)$, we work in $\mathbb{F}_{p^{k}}$, and study

$$
\begin{equation*}
\sigma(x)=\zeta_{k} x \tag{H90}
\end{equation*}
$$

where $\left(\zeta_{k}\right)^{k}=1$ and $\zeta_{k} \in \mathbb{F}_{p} \subset \mathbb{F}_{p^{k}}$

- When $k \mid l$ and $\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$, from $\alpha_{k} \in \mathbb{F}_{p^{k}}, \alpha_{l} \in \mathbb{F}_{p^{l}}$ solutions of (H90), we can deduce an embedding of the form

$$
\alpha_{k} \mapsto \kappa_{k, l}\left(\alpha_{l}\right)^{l / k}
$$

with $\kappa_{k, l} \in \mathbb{F}_{p}$ a constant

Allombert and Bosma, Canon, and Steel

- Need to store one constant $\kappa_{k, l}$ for each pair $\left(\mathbb{F}_{p^{k}}, \mathbb{F}_{p^{l}}\right)$
- The constant $\kappa_{k, l}$ depends on α_{k} and α_{l}

We would like to:

- get rid of the constants $\kappa_{k, l}$ (e.g. have $\kappa_{k, l}=1$)
- equivalently, get "standard" solutions of (H90)
- select solutions α_{k}, α_{l} that always define the same embedding
- such that the constants $\kappa_{k, l}$ are well understood

STANDARD SOLUTIONS

Let $k|l| p-1,\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$

- $\alpha_{k} \in \mathbb{F}_{p^{k}}$ and $\alpha_{l} \in \mathbb{F}_{p^{l}}$ solutions of (H90) for ζ_{k} and ζ_{l}
- $\left(\forall k|l| p-1, \kappa_{k, l}=1\right)$ implies $\left(\alpha_{k}\right)^{k}=\left(\alpha_{l}\right)^{l}=\zeta_{p-1}$
- We can use this property to define "standard solutions"

STANDARD SOLUTIONS

Let $k|l| p-1,\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$

- $\alpha_{k} \in \mathbb{F}_{p^{k}}$ and $\alpha_{l} \in \mathbb{F}_{p^{l}}$ solutions of (H90) for ζ_{k} and ζ_{l}
- $\left(\forall k|l| p-1, \kappa_{k, l}=1\right)$ implies $\left(\alpha_{k}\right)^{k}=\left(\alpha_{l}\right)^{l}=\zeta_{p-1}$
- We can use this property to define "standard solutions"

Definition (Standard solution)
Let $k \mid p-1$ and $\alpha_{k} \in \mathbb{F}_{p^{k}}$ a solution of (H90) for $\zeta_{k}=\left(\zeta_{p-1}\right)^{\frac{p-1}{k}}$, α_{k} is standard if $\left(\alpha_{k}\right)^{k}=\zeta_{p-1}$.

STANDARD SOLUTIONS

Let $k|l| p-1,\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$

- $\alpha_{k} \in \mathbb{F}_{p^{k}}$ and $\alpha_{l} \in \mathbb{F}_{p^{l}}$ solutions of (H90) for ζ_{k} and ζ_{l}
- $\left(\forall k|l| p-1, \kappa_{k, l}=1\right)$ implies $\left(\alpha_{k}\right)^{k}=\left(\alpha_{l}\right)^{l}=\zeta_{p-1}$
- We can use this property to define "standard solutions"

Definition (Standard solution)
Let $k \mid p-1$ and $\alpha_{k} \in \mathbb{F}_{p^{k}}$ a solution of (H90) for $\zeta_{k}=\left(\zeta_{p-1}\right)^{\frac{p-1}{k}}$, α_{k} is standard if $\left(\alpha_{k}\right)^{k}=\zeta_{p-1}$.

Definition (Standard polynomial)
All standard solutions α_{k} define the same irreducible polynomial of degree k, we call it the standard polynomial of degree k.

Standard embeddings

Let $k|l| p-1,\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$

- α_{k} and α_{l} standard solutions of (H90) for ζ_{k} and ζ_{l}

Standard embeddings

Let $k|l| p-1,\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$

- α_{k} and α_{l} standard solutions of (H90) for ζ_{k} and ζ_{l}
- $\kappa_{k, l}=1$

STANDARD EMBEDDINGS

Let $k|l| p-1,\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$

- α_{k} and α_{l} standard solutions of (H90) for ζ_{k} and ζ_{l}
- $\kappa_{k, l}=1$
- The embedding

$$
\alpha_{k} \mapsto\left(\alpha_{l}\right)^{l / k}
$$

is standard too (only depends on ζ_{p-1}).

What HAPPENS WHEN $k \nmid p-1$?

Let $p \nmid k$ and $k \nmid p-1$

- no k-th root of unity ζ_{k} in \mathbb{F}_{p}
- add them! Consider $A_{k}=\mathbb{F}_{p^{k}} \otimes \mathbb{F}_{p}\left(\zeta_{k}\right)$ instead of $\mathbb{F}_{p^{k}}$

$$
\begin{equation*}
(\sigma \otimes 1)(x)=\left(1 \otimes \zeta_{k}\right) x \tag{H90'}
\end{equation*}
$$

- Allombert's algorithm still works!

If $k \mid l$ and $\left(\zeta_{l}\right)^{l / k}=\zeta_{k}$

- Still possible to find standard solutions α_{k}, α_{l} of (H90')
- $\kappa_{k, l} \neq 1$ but easy to compute
- Standard embedding from α_{k} and α_{l}

SCHEME OF OUR WORK

Example of degrees involved in the case $p=5$.

COMPATIBILITY AND COMPLEXITY

Results from [De Feo, Randriambololona, R. '19]:

Proposition (Compatibility)

Let $k|l| m$ and $f: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{l}}, g: \mathbb{F}_{p^{l}} \hookrightarrow \mathbb{F}_{p^{m}}, h: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{m}}$ the standard embeddings. Then we have $g \circ f=h$.

Proposition (Complexity)
Given a collection of Conway polynomials of degree up to d, for any $k|l| p^{i}-1, i \leq d$

- Computing a standard solution α_{k} takes $\tilde{O}\left(k^{2}\right)$
- Given α_{k} and α_{l}, computing the standard embedding $f: \mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{l}}$ takes $\tilde{O}\left(l^{2}\right)$

IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.

Figure: Timings for computing α_{k} (left, logscale), and for computing $\mathbb{F}_{p^{2}} \hookrightarrow \mathbb{F}_{p^{k}}$ (right, logscale) for $p=3$.

CONCLUSION, OPEN PROBLEMS

- We implicitly assume that we have compatible roots ζ (i.e. $\zeta_{k}=\left(\zeta_{l}\right)^{l / k}$ for $\left.k \mid l\right)$
- In practice, this is done using Conway polynomials
- With Conway polynomials up to degree d, we can compute embeddings to finite fields up to any degree $k \mid p^{i}-1, i \leq d$
- quasi-quadratic complexity

Open problems:

- Make this work less standard, but more practical
- Can we replace the Conway polynomials by other polynomials?

Thank you!

