
Introduction Single extension Many extensions

Efficient Arithmetic of Finite Field Extensions

Édouard Rousseau

July 12, 2021
PhD Defense

1 / 42

Introduction Single extension Many extensions

Introduction

2 / 42

Introduction Single extension Many extensions

WHAT ARE FINITE FIELDS?

I In mathematics, we study sets of numbers:
I The set of natural numbers N: 0, 1, 2, 3, . . .
I The set of integers Z: . . . ,−2,−1, 0, 1, 2, . . .
I The set of rational fractions Q: 0, 1, 1

2 ,
1
3 ,−

2
7 , . . .

I The set of real numbers R: 0, 1, 1
2 ,−

2
7 ,
√

2, π, . . .
I and operations between these numbers:

I 1 + 2 in N
I 3− (−2) in Z
I 5× 2

3 in Q
I
√

2/3 in R
I A field is a set of numbers with operations +,−,×, /
I It is called finite when it contains only a finite number of

elements

3 / 42

Introduction Single extension Many extensions

ARITHMETIC OF EXTENSIONS

I The simplest example of finite field is
Fp = Z/pZ = {0, 1, . . . , p− 1}, where all the operations are
taken modulo a prime number p.

I Fp has p elements
I There exists exactly one finite field of size pk for all k ≥ 1
I The field of size pk, Fpk , is an extension of Fp
I We have Fp ⊂ Fpk

I We are interested in computer algebra
I Particularly in the arithmetic of Fpk , i.e. how to perform

operations in Fpk efficiently, on a computer

4 / 42

Introduction Single extension Many extensions

APPLICATIONS OF FINITE FIELDS

Finite fields are widely used in many areas:
I number theory
I algebraic geometry
I coding theory
I cryptography

5 / 42

Introduction Single extension Many extensions

GOALS
I Improve the arithmetic in finite field extensions
I Two directions of study

single extension many extensions

Fp

Fpk

Fp
Fp2

Fp4

Fp3

Fp9

Fp5

Fp25

Fp`
Fp`2

; efficient operations ; efficient morphisms
in one given field between fields

6 / 42

Introduction Single extension Many extensions

CONTRIBUTIONS

Published in the International Symposium on Symbolic and
Algebraic Computation (ISSAC):
I Lattices of compatibly embedded finite fields in Nemo/Flint,

Luca De Feo, Hugues Randriambololona, and É. R., 2018
I Standard lattices of compatibly embedded finite fields, Luca De

Feo, Hugues Randriambololona and É. R., 2019
Published in the International Workshop on the Arithmetic of Finite
Fields (WAIFI):
I Trisymmetric multiplication formulae in finite fields, Hugues

Randriambololona and É. R., 2020

7 / 42

Introduction Single extension Many extensions

Single extension

8 / 42

Introduction Single extension Many extensions

FINITE FIELD ARITHMETIC
Notation: Fpk denotes the finite field with pk elements

Fpk ∼= Fp[X]/(P(X))

I P ∈ Fp[X] is an irreducible polynomial of degree k
Some possible representations:
I Zech’s logarithm: elements are represented as generator

powers

I fast, but only possible for small fields

I normal basis: (α, ασ, . . . , ασ
k−1

)

I fast Frobenius evaluation but slow multiplication

I monomial basis: (1, X̄, . . . , X̄k−1)

I commonly used representation, easy to construct
I multiplication slower than addition

9 / 42

Introduction Single extension Many extensions

FINITE FIELD ARITHMETIC
Notation: Fpk denotes the finite field with pk elements

Fpk ∼= Fp[X]/(P(X))

I P ∈ Fp[X] is an irreducible polynomial of degree k
Some possible representations:
I Zech’s logarithm: elements are represented as generator

powers
I fast, but only possible for small fields

I normal basis: (α, ασ, . . . , ασ
k−1

)

I fast Frobenius evaluation but slow multiplication

I monomial basis: (1, X̄, . . . , X̄k−1)

I commonly used representation, easy to construct
I multiplication slower than addition

9 / 42

Introduction Single extension Many extensions

FINITE FIELD ARITHMETIC
Notation: Fpk denotes the finite field with pk elements

Fpk ∼= Fp[X]/(P(X))

I P ∈ Fp[X] is an irreducible polynomial of degree k
Some possible representations:
I Zech’s logarithm: elements are represented as generator

powers
I fast, but only possible for small fields

I normal basis: (α, ασ, . . . , ασ
k−1

)
I fast Frobenius evaluation but slow multiplication

I monomial basis: (1, X̄, . . . , X̄k−1)

I commonly used representation, easy to construct
I multiplication slower than addition

9 / 42

Introduction Single extension Many extensions

FINITE FIELD ARITHMETIC
Notation: Fpk denotes the finite field with pk elements

Fpk ∼= Fp[X]/(P(X))

I P ∈ Fp[X] is an irreducible polynomial of degree k
Some possible representations:
I Zech’s logarithm: elements are represented as generator

powers
I fast, but only possible for small fields

I normal basis: (α, ασ, . . . , ασ
k−1

)
I fast Frobenius evaluation but slow multiplication

I monomial basis: (1, X̄, . . . , X̄k−1)
I commonly used representation, easy to construct
I multiplication slower than addition

9 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication

I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)

I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques

I Schönhage-Strassen (1971)
I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)

I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .

I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MOTIVATION

I Computations in an extension Fpk

I multiplications: expensive /
I additions, scalar multiplications: cheap ,

I we want to study/reduce the cost of multiplication
I A lot of litterature on the subject

I Karatsuba (1962)
I Toom-Cook (1963), evaluation-interpolation techniques
I Schönhage-Strassen (1971)
I . . .
I O(k log k) algorithm [Harvey, Van Der Hoeven ’19]

10 / 42

Introduction Single extension Many extensions

MODELS OF COMPLEXITY

A an Fp-algebra
I algebraic complexity: we count all operations +,× in Fp
I bilinear complexity: we count only the multiplications

I nice results with polynomials: Karatsuba’s algorithm
I and with matrices: Strassen’s algorithm

When A = Fpk :
I theoretical interest
I links with coding theory
I links with algebraic geometry

11 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: INTUITION

I Fpk an extension of Fp

I bilinear complexity: number of subproducts in Fp needed
to compute a product in Fpk

Karatsuba:
(a0 + a1X)(b0 + b1X) =

a0b0 + (a0b1 + a1b0)X + a1b1X2

with
c0 = a0b0
c1 = a1b1
c2 = (a0 + a1)(b0 + b1)

I / Hard to compute the bilinear complexity of a product:
unkwown even for the 3× 3 matrix product

12 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: INTUITION

I Fpk an extension of Fp

I bilinear complexity: number of subproducts in Fp needed
to compute a product in Fpk

Karatsuba:
(a0 + a1X)(b0 + b1X) =

a0b0 + (a0b1 + a1b0)X + a1b1X2

with
c0 = a0b0
c1 = a1b1
c2 = (a0 + a1)(b0 + b1)

I / Hard to compute the bilinear complexity of a product:
unkwown even for the 3× 3 matrix product

12 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: INTUITION

I Fpk an extension of Fp

I bilinear complexity: number of subproducts in Fp needed
to compute a product in Fpk

Karatsuba:
(a0 + a1X)(b0 + b1X) =

c0 + (c2 − c1 − c0)X + c1X2

with
c0 = a0b0
c1 = a1b1
c2 = (a0 + a1)(b0 + b1)

I / Hard to compute the bilinear complexity of a product:
unkwown even for the 3× 3 matrix product

12 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: INTUITION

I Fpk an extension of Fp

I bilinear complexity: number of subproducts in Fp needed
to compute a product in Fpk

Karatsuba:
(a0 + a1X)(b0 + b1X) =

c0 + (c2 − c1 − c0)X + c1X2

with
c0 = a0b0
c1 = a1b1
c2 = (a0 + a1)(b0 + b1)

I / Hard to compute the bilinear complexity of a product:
unkwown even for the 3× 3 matrix product

12 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: INTUITION

I Fpk an extension of Fp

I bilinear complexity: number of subproducts in Fp needed
to compute a product in Fpk

Karatsuba:
(a0 + a1X)(b0 + b1X) =

c0 + (c2 − c1 − c0)X + c1X2

with
c0 = a0b0
c1 = a1b1
c2 = (a0 + a1)(b0 + b1)

I / Hard to compute the bilinear complexity of a product:
unkwown even for the 3× 3 matrix product

12 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4

I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy

I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

COMPLEXITY OF KARATSUBA’S ALGORITHM

I Degree 2: 3 multiplications instead of 4
I Higher degrees: reccursive strategy
I Asymptotically: O(n1.58) instead of O(n2)

13 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: DEFINITION

Definition
The bilinear complexity of the product in Fpk is the minimal
integer r ∈ N such that you can write, for all x, y ∈ Fpk

xy =

r∑
j=1

ϕj(x)ψj(y) · αj

with ϕj, ψj linear forms and αj elements of Fpk .

I ϕj(x): linear combination of the coordinates xi of x
I ψj(y): linear combination of the coordinates yi of y

14 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: DEFINITION

Definition
The bilinear complexity of the product in Fpk is the minimal
integer r ∈ N such that you can write, for all x, y ∈ Fpk

xy =

r∑
j=1

ϕj(x)ψj(y) · αj

with ϕj, ψj linear forms and αj elements of Fpk .

I ϕj(x): linear combination of the coordinates xi of x
I ψj(y): linear combination of the coordinates yi of y

14 / 42

Introduction Single extension Many extensions

BILINEAR COMPLEXITY: DEFINITION

Definition
The bilinear complexity of the product in Fpk is the minimal
integer r ∈ N such that you can write, for all x, y ∈ Fpk

xy =

r∑
j=1

ϕj(x)ψj(y) · αj

with ϕj, ψj linear forms and αj elements of Fpk .

I ϕj(x): linear combination of the coordinates xi of x
I ψj(y): linear combination of the coordinates yi of y

14 / 42

Introduction Single extension Many extensions

NOTATIONS AND QUESTIONS

I µp(k) = bilinear complexity of the product in Fpk

Two independent questions:
I What is the asymptotic behaviour of µp(k)?

I µp(k) is linear in k
I Evaluation-interpolation techniques:

I [Chudnovsky-Chudnovsky ’87]
I [Shparlinski-Tsfasman-Vladut ’92]
I [Ballet ’99]
I [Randriambololona ’12]
I . . .

I Can we find values µp(k) for small k?

I Clever exhaustive search [BDEZ ’12] [Covanov ’18]

15 / 42

Introduction Single extension Many extensions

NOTATIONS AND QUESTIONS

I µp(k) = bilinear complexity of the product in Fpk

Two independent questions:
I What is the asymptotic behaviour of µp(k)?

I µp(k) is linear in k

I Evaluation-interpolation techniques:

I [Chudnovsky-Chudnovsky ’87]
I [Shparlinski-Tsfasman-Vladut ’92]
I [Ballet ’99]
I [Randriambololona ’12]
I . . .

I Can we find values µp(k) for small k?

I Clever exhaustive search [BDEZ ’12] [Covanov ’18]

15 / 42

Introduction Single extension Many extensions

NOTATIONS AND QUESTIONS

I µp(k) = bilinear complexity of the product in Fpk

Two independent questions:
I What is the asymptotic behaviour of µp(k)?

I µp(k) is linear in k
I Evaluation-interpolation techniques:

I [Chudnovsky-Chudnovsky ’87]
I [Shparlinski-Tsfasman-Vladut ’92]
I [Ballet ’99]
I [Randriambololona ’12]
I . . .

I Can we find values µp(k) for small k?

I Clever exhaustive search [BDEZ ’12] [Covanov ’18]

15 / 42

Introduction Single extension Many extensions

NOTATIONS AND QUESTIONS

I µp(k) = bilinear complexity of the product in Fpk

Two independent questions:
I What is the asymptotic behaviour of µp(k)?

I µp(k) is linear in k
I Evaluation-interpolation techniques:

I [Chudnovsky-Chudnovsky ’87]
I [Shparlinski-Tsfasman-Vladut ’92]
I [Ballet ’99]
I [Randriambololona ’12]
I . . .

I Can we find values µp(k) for small k?

I Clever exhaustive search [BDEZ ’12] [Covanov ’18]

15 / 42

Introduction Single extension Many extensions

NOTATIONS AND QUESTIONS

I µp(k) = bilinear complexity of the product in Fpk

Two independent questions:
I What is the asymptotic behaviour of µp(k)?

I µp(k) is linear in k
I Evaluation-interpolation techniques:

I [Chudnovsky-Chudnovsky ’87]
I [Shparlinski-Tsfasman-Vladut ’92]
I [Ballet ’99]
I [Randriambololona ’12]
I . . .

I Can we find values µp(k) for small k?
I Clever exhaustive search [BDEZ ’12] [Covanov ’18]

15 / 42

Introduction Single extension Many extensions

SYMMETRIC DECOMPOSITIONS

Classic decompositions Symmetric decompositions
xy =

∑r
j=1 ϕj(x)ψj(y) · αj yx = xy =

∑r
j=1 ϕj(x)ϕj(y) · αj

Notation: for Fpk , we note µsym
p (k) the minimal length r in a

symmetric decomposition
I Asymptotics: µsym

p (k) is linear in k
I Small values: smaller search space ; faster algorithms

16 / 42

Introduction Single extension Many extensions

SYMMETRIC DECOMPOSITIONS

Classic decompositions Symmetric decompositions
xy =

∑r
j=1 ϕj(x)ψj(y) · αj yx = xy =

∑r
j=1 ϕj(x)ϕj(y) · αj

Notation: for Fpk , we note µsym
p (k) the minimal length r in a

symmetric decomposition
I Asymptotics: µsym

p (k) is linear in k
I Small values: smaller search space ; faster algorithms

16 / 42

Introduction Single extension Many extensions

SYMMETRIC DECOMPOSITIONS

Classic decompositions Symmetric decompositions
xy =

∑r
j=1 ϕj(x)ψj(y) · αj yx = xy =

∑r
j=1 ϕj(x)ϕj(y) · αj

Notation: for Fpk , we note µsym
p (k) the minimal length r in a

symmetric decomposition

I Asymptotics: µsym
p (k) is linear in k

I Small values: smaller search space ; faster algorithms

16 / 42

Introduction Single extension Many extensions

SYMMETRIC DECOMPOSITIONS

Classic decompositions Symmetric decompositions
xy =

∑r
j=1 ϕj(x)ψj(y) · αj yx = xy =

∑r
j=1 ϕj(x)ϕj(y) · αj

Notation: for Fpk , we note µsym
p (k) the minimal length r in a

symmetric decomposition
I Asymptotics: µsym

p (k) is linear in k

I Small values: smaller search space ; faster algorithms

16 / 42

Introduction Single extension Many extensions

SYMMETRIC DECOMPOSITIONS

Classic decompositions Symmetric decompositions
xy =

∑r
j=1 ϕj(x)ψj(y) · αj yx = xy =

∑r
j=1 ϕj(x)ϕj(y) · αj

Notation: for Fpk , we note µsym
p (k) the minimal length r in a

symmetric decomposition
I Asymptotics: µsym

p (k) is linear in k
I Small values: smaller search space ; faster algorithms

16 / 42

Introduction Single extension Many extensions

EVEN MORE SYMMETRY

I every linear form ϕ ∈ (Fpk)∨ can be written x 7→ Tr(αx) for
some α ∈ Fpk , with Tr the trace of Fpk/Fp

I we can rewrite the formula

, and even ask βj = λjαj

xy =

r∑
j=1

ϕj(x)ϕj(y) · βj

with λj ∈ Fp scalars
I we call these formulae trisymmetric decompositions
I we note µtri

p (k) the minimal r in such formulae

17 / 42

Introduction Single extension Many extensions

EVEN MORE SYMMETRY

I every linear form ϕ ∈ (Fpk)∨ can be written x 7→ Tr(αx) for
some α ∈ Fpk , with Tr the trace of Fpk/Fp

I we can rewrite the formula

, and even ask βj = λjαj

xy =

r∑
j=1

Tr(αjx) Tr(αjy) · βj

with λj ∈ Fp scalars
I we call these formulae trisymmetric decompositions
I we note µtri

p (k) the minimal r in such formulae

17 / 42

Introduction Single extension Many extensions

EVEN MORE SYMMETRY

I every linear form ϕ ∈ (Fpk)∨ can be written x 7→ Tr(αx) for
some α ∈ Fpk , with Tr the trace of Fpk/Fp

I we can rewrite the formula, and even ask βj = λjαj

xy =

r∑
j=1

λj Tr(αjx) Tr(αjy) · αj

with λj ∈ Fp scalars

I we call these formulae trisymmetric decompositions
I we note µtri

p (k) the minimal r in such formulae

17 / 42

Introduction Single extension Many extensions

EVEN MORE SYMMETRY

I every linear form ϕ ∈ (Fpk)∨ can be written x 7→ Tr(αx) for
some α ∈ Fpk , with Tr the trace of Fpk/Fp

I we can rewrite the formula, and even ask βj = λjαj

xy =

r∑
j=1

λj Tr(αjx) Tr(αjy) · αj

with λj ∈ Fp scalars
I we call these formulae trisymmetric decompositions

I we note µtri
p (k) the minimal r in such formulae

17 / 42

Introduction Single extension Many extensions

EVEN MORE SYMMETRY

I every linear form ϕ ∈ (Fpk)∨ can be written x 7→ Tr(αx) for
some α ∈ Fpk , with Tr the trace of Fpk/Fp

I we can rewrite the formula, and even ask βj = λjαj

xy =

r∑
j=1

λj Tr(αjx) Tr(αjy) · αj

with λj ∈ Fp scalars
I we call these formulae trisymmetric decompositions
I we note µtri

p (k) the minimal r in such formulae

17 / 42

Introduction Single extension Many extensions

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

I F32 ∼= F3[z]/(z2 − z− 1) ∼= F3(ζ)

I x, y ∈ F32 , x = x0 + x1ζ and y = y0 + y1ζ

(x0 + x1ζ)(y0 + y1ζ) = (x0y0 + x1y1) + (x0y1 + x1y0 + x1y1)ζ

xy = −Tr(1× x) Tr(1× y) · 1− Tr(ζ × x) Tr(ζ × y) · ζ
+ Tr((ζ − 1)× x) Tr((ζ − 1)× y) · (ζ − 1)

with
Tr(x) Tr(y) = (x0 − x1)(y0 − y1)
Tr((ζ − 1)x) Tr((ζ − 1)y) = (x0 + x1)(y0 + y1)
Tr(ζx) Tr(ζy) = x0y0

18 / 42

Introduction Single extension Many extensions

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

I F32 ∼= F3[z]/(z2 − z− 1) ∼= F3(ζ)

I x, y ∈ F32 , x = x0 + x1ζ and y = y0 + y1ζ

(x0 + x1ζ)(y0 + y1ζ) = (x0y0 + x1y1) + (x0y1 + x1y0 + x1y1)ζ

xy = −Tr(1× x) Tr(1× y) · 1− Tr(ζ × x) Tr(ζ × y) · ζ
+ Tr((ζ − 1)× x) Tr((ζ − 1)× y) · (ζ − 1)

with
Tr(x) Tr(y) = (x0 − x1)(y0 − y1)
Tr((ζ − 1)x) Tr((ζ − 1)y) = (x0 + x1)(y0 + y1)
Tr(ζx) Tr(ζy) = x0y0

18 / 42

Introduction Single extension Many extensions

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

I F32 ∼= F3[z]/(z2 − z− 1) ∼= F3(ζ)

I x, y ∈ F32 , x = x0 + x1ζ and y = y0 + y1ζ

(x0 + x1ζ)(y0 + y1ζ) = (x0y0 + x1y1) + (x0y1 + x1y0 + x1y1)ζ

xy = −Tr(1× x) Tr(1× y) · 1− Tr(ζ × x) Tr(ζ × y) · ζ
+ Tr((ζ − 1)× x) Tr((ζ − 1)× y) · (ζ − 1)

with
Tr(x) Tr(y) = (x0 − x1)(y0 − y1)
Tr((ζ − 1)x) Tr((ζ − 1)y) = (x0 + x1)(y0 + y1)
Tr(ζx) Tr(ζy) = x0y0

18 / 42

Introduction Single extension Many extensions

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

I F32 ∼= F3[z]/(z2 − z− 1) ∼= F3(ζ)

I x, y ∈ F32 , x = x0 + x1ζ and y = y0 + y1ζ

(x0 + x1ζ)(y0 + y1ζ) = (x0y0 + x1y1) + (x0y1 + x1y0 + x1y1)ζ

xy = −Tr(1× x) Tr(1× y) · 1− Tr(ζ × x) Tr(ζ × y) · ζ
+ Tr((ζ − 1)× x) Tr((ζ − 1)× y) · (ζ − 1)

with
Tr(x) Tr(y) = (x0 − x1)(y0 − y1)
Tr((ζ − 1)x) Tr((ζ − 1)y) = (x0 + x1)(y0 + y1)
Tr(ζx) Tr(ζy) = x0y0

18 / 42

Introduction Single extension Many extensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µp(k) ≤ µsym
p (k) ≤ µtri

p (k)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for p = 2,m ≥ 3.
Results from [Randriambololona, R. ’20]:
I Asymptotics: linearity in k can be obtained for symmetric

multilinear decompositions in Fpk

I Corollary: µtri
p (k) is also linear in k

I Small values: usual algorithms do not work

I We provide an ad hoc exhaustive search algorithm

19 / 42

Introduction Single extension Many extensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µp(k) <
?
µ

sym
p (k) <

?
µtri

p (k)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for p = 2,m ≥ 3.
Results from [Randriambololona, R. ’20]:
I Asymptotics: linearity in k can be obtained for symmetric

multilinear decompositions in Fpk

I Corollary: µtri
p (k) is also linear in k

I Small values: usual algorithms do not work

I We provide an ad hoc exhaustive search algorithm

19 / 42

Introduction Single extension Many extensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µp(k) <
?
µ

sym
p (k) <

?
µtri

p (k)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for p = 2,m ≥ 3.

Results from [Randriambololona, R. ’20]:
I Asymptotics: linearity in k can be obtained for symmetric

multilinear decompositions in Fpk

I Corollary: µtri
p (k) is also linear in k

I Small values: usual algorithms do not work

I We provide an ad hoc exhaustive search algorithm

19 / 42

Introduction Single extension Many extensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µp(k) <
?
µ

sym
p (k) <

?
µtri

p (k)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for p = 2,m ≥ 3.
Results from [Randriambololona, R. ’20]:
I Asymptotics: linearity in k can be obtained for symmetric

multilinear decompositions in Fpk

I Corollary: µtri
p (k) is also linear in k

I Small values: usual algorithms do not work

I We provide an ad hoc exhaustive search algorithm

19 / 42

Introduction Single extension Many extensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µp(k) <
?
µ

sym
p (k) <

?
µtri

p (k)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for p = 2,m ≥ 3.
Results from [Randriambololona, R. ’20]:
I Asymptotics: linearity in k can be obtained for symmetric

multilinear decompositions in Fpk

I Corollary: µtri
p (k) is also linear in k

I Small values: usual algorithms do not work

I We provide an ad hoc exhaustive search algorithm

19 / 42

Introduction Single extension Many extensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µp(k) <
?
µ

sym
p (k) <

?
µtri

p (k)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for p = 2,m ≥ 3.
Results from [Randriambololona, R. ’20]:
I Asymptotics: linearity in k can be obtained for symmetric

multilinear decompositions in Fpk

I Corollary: µtri
p (k) is also linear in k

I Small values: usual algorithms do not work

I We provide an ad hoc exhaustive search algorithm

19 / 42

Introduction Single extension Many extensions

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

µp(k) <
?
µ

sym
p (k) <

?
µtri

p (k)

Proposition (Randriambololona, ’14)
Tri-symmetric decompositions always exist, except for p = 2,m ≥ 3.
Results from [Randriambololona, R. ’20]:
I Asymptotics: linearity in k can be obtained for symmetric

multilinear decompositions in Fpk

I Corollary: µtri
p (k) is also linear in k

I Small values: usual algorithms do not work
I We provide an ad hoc exhaustive search algorithm

19 / 42

Introduction Single extension Many extensions

PARTIAL CONCLUSION

Results:
I Linearity of the symmetric multilinear complexity
I Linearity of the trisymmetric complexity
I New algorithm to find trisymmetric decompositions

Future work:
I Find better bounds for the linearity of µtri

p

I Find algorithms exploiting the symmetries in the
trisymmetric decompositions

20 / 42

Introduction Single extension Many extensions

PARTIAL CONCLUSION

Results:
I Linearity of the symmetric multilinear complexity
I Linearity of the trisymmetric complexity
I New algorithm to find trisymmetric decompositions

Future work:
I Find better bounds for the linearity of µtri

p

I Find algorithms exploiting the symmetries in the
trisymmetric decompositions

20 / 42

Introduction Single extension Many extensions

Many extensions

21 / 42

Introduction Single extension Many extensions

CONTEXT
I Use of Computer Algebra System (CAS)
I Use of many extensions of a prime finite field Fp

I Computations in F̄p.

Fp

Fp2

Fp4

Fp3

Fp3

Fp9

Fp5

Fp5

Fp25

Fp`

Fp`2

22 / 42

Introduction Single extension Many extensions

CONTEXT
I Use of Computer Algebra System (CAS)
I Use of many extensions of a prime finite field Fp

I Computations in F̄p.

Fp

Fp2

Fp4

Fp3

Fp3

Fp9

Fp5

Fp5

Fp25

Fp`

Fp`2

22 / 42

Introduction Single extension Many extensions

EMBEDDINGS

I When k | l, we know Fpk ↪→ Fpl

I How to compute an embedding efficiently?
I There are several embeddings, how to choose?

I Naive algorithm: if Fpk = Fp[x]/(P(x)), find a root ρ of P in
Fpl and map x̄ to ρ. Complexity strictly larger than Õ(k2).

I Lots of other solutions in the litterature:
I [Lenstra ’91]
I [Allombert ’02]
I [Rains ’96]
I [Narayanan ’18]

23 / 42

Introduction Single extension Many extensions

COMPATIBILITY
I Fpk ,Fpl ,Fpm three finite fields with k | l | m
I f : Fpk ↪→ Fpl , g : Fpl ↪→ Fpm , h : Fpk ↪→ Fpm embeddings

Compatibility:

Fpk

Fpl

Fpm

f

h

g

g ◦ f ?
= h

In: p = 17; Fp = GF(p); FpX.<x> = Fp[]
We create finite fields of degree 12, 24, 48
P12, P24 = x^12 + x + 2, x^24 + x^2 + 2*x + 7
P48 = x^48 + x^2 + 2*x + 6
GFp12 = FiniteField(p^12, ’x12’, modulus=P12)
GFp24 = FiniteField(p^24, ’x24’, modulus=P24)
GFp48 = FiniteField(p^48, ’x48’, modulus=P48)
We (naively) compute the roots we need
a = P12.any_root(GFp24) # Image of ’x12’ in GFp24
b = P24.any_root(GFp48) # Image of ’x24’ in GFp48
c = P12.any_root(GFp48) # Image of ’x12’ in GFp48
a # We print ’a’

Out: 6*x24^23 + 15*x24^22 + ... + 12*x24 + 16

We map ’x24’ to ’b’
In: c == a.polynomial()(b)

Out: False

24 / 42

Introduction Single extension Many extensions

COMPATIBILITY
I Fpk ,Fpl ,Fpm three finite fields with k | l | m
I f : Fpk ↪→ Fpl , g : Fpl ↪→ Fpm , h : Fpk ↪→ Fpm embeddings

Compatibility:

Fpk

Fpl

Fpm

f

h

g

g ◦ f ?
= h

In: p = 17; Fp = GF(p); FpX.<x> = Fp[]
We create finite fields of degree 12, 24, 48
P12, P24 = x^12 + x + 2, x^24 + x^2 + 2*x + 7
P48 = x^48 + x^2 + 2*x + 6
GFp12 = FiniteField(p^12, ’x12’, modulus=P12)
GFp24 = FiniteField(p^24, ’x24’, modulus=P24)
GFp48 = FiniteField(p^48, ’x48’, modulus=P48)
We (naively) compute the roots we need
a = P12.any_root(GFp24) # Image of ’x12’ in GFp24
b = P24.any_root(GFp48) # Image of ’x24’ in GFp48
c = P12.any_root(GFp48) # Image of ’x12’ in GFp48
a # We print ’a’

Out: 6*x24^23 + 15*x24^22 + ... + 12*x24 + 16

We map ’x24’ to ’b’
In: c == a.polynomial()(b)

Out: False

24 / 42

Introduction Single extension Many extensions

COMPATIBILITY
I Fpk ,Fpl ,Fpm three finite fields with k | l | m
I f : Fpk ↪→ Fpl , g : Fpl ↪→ Fpm , h : Fpk ↪→ Fpm embeddings

Compatibility:

Fpk

Fpl

Fpm

f

h

g

g ◦ f ?
= h

In: p = 17; Fp = GF(p); FpX.<x> = Fp[]
We create finite fields of degree 12, 24, 48
P12, P24 = x^12 + x + 2, x^24 + x^2 + 2*x + 7
P48 = x^48 + x^2 + 2*x + 6
GFp12 = FiniteField(p^12, ’x12’, modulus=P12)
GFp24 = FiniteField(p^24, ’x24’, modulus=P24)
GFp48 = FiniteField(p^48, ’x48’, modulus=P48)
We (naively) compute the roots we need
a = P12.any_root(GFp24) # Image of ’x12’ in GFp24
b = P24.any_root(GFp48) # Image of ’x24’ in GFp48
c = P12.any_root(GFp48) # Image of ’x12’ in GFp48
a # We print ’a’

Out: 6*x24^23 + 15*x24^22 + ... + 12*x24 + 16

We map ’x24’ to ’b’
In: c == a.polynomial()(b)

Out: False

24 / 42

Introduction Single extension Many extensions

ENSURING COMPATIBILITY: CONWAY POLYNOMIALS

Definition (l-th Conway polynomials Cl)

I degree l, irreducible, monic
I primitive (i.e. its roots generate F×pl)

I norm-compatible (i.e. Ck

(
X

pl−1
pk−1

)
= 0 mod Cl if k | l)

I Standard polynomials

I Compatible embeddings: X̄ 7→ Ȳ
pl−1
pk−1 Õ(l2)

I Hard to compute (exponential complexity)

25 / 42

Introduction Single extension Many extensions

ENSURING COMPATIBILITY: CONWAY POLYNOMIALS

Definition (l-th Conway polynomials Cl)

I degree l, irreducible, monic
I primitive (i.e. its roots generate F×pl)

I norm-compatible (i.e. Ck

(
X

pl−1
pk−1

)
= 0 mod Cl if k | l)

I Standard polynomials

I Compatible embeddings: X̄ 7→ Ȳ
pl−1
pk−1 Õ(l2)

I Hard to compute (exponential complexity)

25 / 42

Introduction Single extension Many extensions

ENSURING COMPATIBILITY: CONWAY POLYNOMIALS

Definition (l-th Conway polynomials Cl)

I degree l, irreducible, monic
I primitive (i.e. its roots generate F×pl)

I norm-compatible (i.e. Ck

(
X

pl−1
pk−1

)
= 0 mod Cl if k | l)

I Standard polynomials

I Compatible embeddings: X̄ 7→ Ȳ
pl−1
pk−1 Õ(l2)

I Hard to compute (exponential complexity)

25 / 42

Introduction Single extension Many extensions

ENSURING COMPATIBILITY: CONWAY POLYNOMIALS

Definition (l-th Conway polynomials Cl)

I degree l, irreducible, monic
I primitive (i.e. its roots generate F×pl)

I norm-compatible (i.e. Ck

(
X

pl−1
pk−1

)
= 0 mod Cl if k | l)

I Standard polynomials

I Compatible embeddings: X̄ 7→ Ȳ
pl−1
pk−1 Õ(l2)

I Hard to compute (exponential complexity)

25 / 42

Introduction Single extension Many extensions

ENSURING COMPATIBILITY: BOSMA, CANNON AND

STEEL

I Framework originally used in MAGMA
I Based on the naive embedding algorithm
I Allows user-defined finite fields
I Computations made on the fly

26 / 42

Introduction Single extension Many extensions

COMMON SUBFIELD

I Generalization of the naive algorithm

Fpk

Fpl

Fpm

f

h

I Consider α such that Fpl = Fp(α)

I Take ρ a root of h(minpolyFpk
(α))

I Map α 7→ ρ

We obtain h = g ◦ f

27 / 42

Introduction Single extension Many extensions

SEVERAL SUBFIELDS

Fpk1 Fpk2 Fpkr. . .

Fpl

Fpm

I Consider α such that Fpl = Fp(α)

I Take ρ a root of gcdi(hi(minpolyF
pki

(α)))

I Map α 7→ ρ

I This gives an embedding compatible with all subfields

28 / 42

Introduction Single extension Many extensions

IMPLICIT ISOMORPHISMS

From implicit isomorphisms come compatibility conditions

Fp4 Fp6

Fp12

Fp24

⊂ ⊂

Fp2 Fp2∼=

Fp4

Fp12

Fp6

Fp4 ∩ Fp6 = Fp2

? ?

29 / 42

Introduction Single extension Many extensions

IMPLICIT ISOMORPHISMS

From implicit isomorphisms come compatibility conditions

Fp4 Fp6

Fp12

Fp24

⊂ ⊂

Fp2 Fp2∼=

Fp4

Fp12

Fp6

Fp4 ∩ Fp6 = Fp2

? ?

29 / 42

Introduction Single extension Many extensions

IMPLICIT ISOMORPHISMS

From implicit isomorphisms come compatibility conditions

Fp4 Fp6

Fp12

Fp24

⊂ ⊂

Fp2 Fp2∼=

Fp4

Fp12

Fp6

Fp4 ∩ Fp6 = Fp2

? ?

29 / 42

Introduction Single extension Many extensions

COMPUTING THE INTERSECTIONS
An example of what can happen with the intersections:

Fp60

Fp120

Fp60

Fp30

Fp40

Fp6

Fp20

Fp10

Fp2

30 / 42

Introduction Single extension Many extensions

COMPUTING THE INTERSECTIONS
An example of what can happen with the intersections:

Fp60

Fp120

Fp60

Fp30

Fp40

Fp6

Fp20

Fp10

Fp2

30 / 42

Introduction Single extension Many extensions

COMPUTING THE INTERSECTIONS
An example of what can happen with the intersections:

Fp60

Fp120

Fp60

Fp30

Fp40

Fp6

Fp20

Fp10

Fp2

30 / 42

Introduction Single extension Many extensions

COMPUTING THE INTERSECTIONS
An example of what can happen with the intersections:

Fp60

Fp120

Fp60

Fp30

Fp40

Fp6

Fp20

Fp10

Fp2

30 / 42

Introduction Single extension Many extensions

COMPUTING THE INTERSECTIONS
An example of what can happen with the intersections:

Fp60

Fp120

Fp60

Fp30

Fp40

Fp6

Fp20

Fp10

Fp2

30 / 42

Introduction Single extension Many extensions

COMPUTING THE INTERSECTIONS
An example of what can happen with the intersections:

Fp60

Fp120

Fp60

Fp30

Fp40

Fp6

Fp20

Fp10

Fp2

30 / 42

Introduction Single extension Many extensions

COMPUTING THE INTERSECTIONS
An example of what can happen with the intersections:

Fp60

Fp120

Fp60

Fp30

Fp40

Fp6

Fp20

Fp10

Fp2

30 / 42

Introduction Single extension Many extensions

RESULTS

I Following [De Feo, Randriambololona, R. ’18],
Bosma-Canon-Steel framework is now part of the free
Computer Algebra System Nemo

I It is practical but
I based on the naive embedding algorithm

; superquadratic complexity
I adding an extension is quadratic in the size of the lattice

Goals:
I Change the embedding algorithm
I Lessen the cost of adding an extension

31 / 42

Introduction Single extension Many extensions

IDEAS

I Plugging Allombert’s embedding algorithm in Bosma,
Cannon, and Steel

I Generalizing Bosma, Cannon, and Steel
I Generalizing Conway polynomials

Bring the best of both worlds!

32 / 42

Introduction Single extension Many extensions

ALLOMBERT’S EMBEDDING ALGORITHM

I Based on Kummer theory
I For k | (p− 1), we work in Fpk , and study

σ(x) = ζkx (H90)

where (ζk)
k = 1 and ζk ∈ Fp ⊂ Fpk

I When k | l and (ζl)
l/k = ζk, from αk ∈ Fpk , αl ∈ Fpl solutions

of (H90), we can deduce an embedding of the form

αk 7→ κk,l(αl)
l/k

with κk,l ∈ Fp a constant

33 / 42

Introduction Single extension Many extensions

ALLOMBERT AND BOSMA, CANON, AND STEEL

I Need to store one constant κk,l for each pair (Fpk ,Fpl)

I The constant κk,l depends on αk and αl

We would like to:
I get rid of the constants κk,l (e.g. have κk,l = 1)
I equivalently, get "standard" solutions of (H90)

I select solutions αk, αl that always define the same
embedding

I such that the constants κk,l are well understood

34 / 42

Introduction Single extension Many extensions

STANDARD SOLUTIONS

Let k | l | p− 1, (ζl)
l/k = ζk

I αk ∈ Fpk and αl ∈ Fpl solutions of (H90) for ζk and ζl

I (∀k | l | p− 1, κk,l = 1) implies (αk)
k = (αl)

l = ζp−1

I We can use this property to define “standard solutions”

Definition (Standard solution)
Let k | p− 1 and αk ∈ Fpk a solution of (H90) for ζk = (ζp−1)

p−1
k ,

αk is standard if (αk)
k = ζp−1.

Definition (Standard polynomial)
All standard solutions αk define the same irreducible
polynomial of degree k, we call it the standard polynomial of
degree k.

35 / 42

Introduction Single extension Many extensions

STANDARD SOLUTIONS

Let k | l | p− 1, (ζl)
l/k = ζk

I αk ∈ Fpk and αl ∈ Fpl solutions of (H90) for ζk and ζl

I (∀k | l | p− 1, κk,l = 1) implies (αk)
k = (αl)

l = ζp−1

I We can use this property to define “standard solutions”

Definition (Standard solution)
Let k | p− 1 and αk ∈ Fpk a solution of (H90) for ζk = (ζp−1)

p−1
k ,

αk is standard if (αk)
k = ζp−1.

Definition (Standard polynomial)
All standard solutions αk define the same irreducible
polynomial of degree k, we call it the standard polynomial of
degree k.

35 / 42

Introduction Single extension Many extensions

STANDARD SOLUTIONS

Let k | l | p− 1, (ζl)
l/k = ζk

I αk ∈ Fpk and αl ∈ Fpl solutions of (H90) for ζk and ζl

I (∀k | l | p− 1, κk,l = 1) implies (αk)
k = (αl)

l = ζp−1

I We can use this property to define “standard solutions”

Definition (Standard solution)
Let k | p− 1 and αk ∈ Fpk a solution of (H90) for ζk = (ζp−1)

p−1
k ,

αk is standard if (αk)
k = ζp−1.

Definition (Standard polynomial)
All standard solutions αk define the same irreducible
polynomial of degree k, we call it the standard polynomial of
degree k.

35 / 42

Introduction Single extension Many extensions

STANDARD EMBEDDINGS

Let k | l | p− 1, (ζl)
l/k = ζk

I αk and αl standard solutions of (H90) for ζk and ζl

I κk,l = 1

I The embedding
αk 7→ (αl)

l/k

is standard too (only depends on ζp−1).

36 / 42

Introduction Single extension Many extensions

STANDARD EMBEDDINGS

Let k | l | p− 1, (ζl)
l/k = ζk

I αk and αl standard solutions of (H90) for ζk and ζl
I κk,l = 1

I The embedding
αk 7→ (αl)

l/k

is standard too (only depends on ζp−1).

36 / 42

Introduction Single extension Many extensions

STANDARD EMBEDDINGS

Let k | l | p− 1, (ζl)
l/k = ζk

I αk and αl standard solutions of (H90) for ζk and ζl
I κk,l = 1

I The embedding
αk 7→ (αl)

l/k

is standard too (only depends on ζp−1).

36 / 42

Introduction Single extension Many extensions

WHAT HAPPENS WHEN k - p− 1?

Let p - k and k - p− 1
I no k-th root of unity ζk in Fp

I add them! Consider Ak = Fpk ⊗ Fp(ζk) instead of Fpk

(σ ⊗ 1)(x) = (1⊗ ζk)x (H90’)

I Allombert’s algorithm still works!
If k | l and (ζl)

l/k = ζk

I Still possible to find standard solutions αk, αl of (H90’)
I κk,l 6= 1 but easy to compute
I Standard embedding from αk and αl

37 / 42

Introduction Single extension Many extensions

SCHEME OF OUR WORK

Fpk

Fpl

Fpm

12

168

2184

⊗

⊗

⊗

Fp(ζk)

Fp(ζl)

Fp(ζm)

2

6

12

Conway polynomials!

Example of degrees involved in the case p = 5.

38 / 42

Introduction Single extension Many extensions

SCHEME OF OUR WORK

Fpk

Fpl

Fpm

12

168

2184

⊗

⊗

⊗

Fp(ζk)

Fp(ζl)

Fp(ζm)

2

6

12

Conway polynomials!

Example of degrees involved in the case p = 5.

38 / 42

Introduction Single extension Many extensions

SCHEME OF OUR WORK

Fpk

Fpl

Fpm

12

168

2184

⊗

⊗

⊗

Fp(ζk)

Fp(ζl)

Fp(ζm)

2

6

12

Conway polynomials!

Example of degrees involved in the case p = 5.

38 / 42

Introduction Single extension Many extensions

SCHEME OF OUR WORK

Fpk

Fpl

Fpm

12

168

2184

⊗

⊗

⊗

Fp(ζk)

Fp(ζl)

Fp(ζm)

2

6

12

Conway polynomials!

Example of degrees involved in the case p = 5.

38 / 42

Introduction Single extension Many extensions

SCHEME OF OUR WORK

Fpk

Fpl

Fpm

12

168

2184

⊗

⊗

⊗

Fp(ζk)

Fp(ζl)

Fp(ζm)

2

6

12

Conway polynomials!

Example of degrees involved in the case p = 5.

38 / 42

Introduction Single extension Many extensions

SCHEME OF OUR WORK

Fpk

Fpl

Fpm

12

168

2184

⊗

⊗

⊗

Fp(ζk)

Fp(ζl)

Fp(ζm)

2

6

12

Conway polynomials!

Example of degrees involved in the case p = 5.

38 / 42

Introduction Single extension Many extensions

COMPATIBILITY AND COMPLEXITY

Results from [De Feo, Randriambololona, R. ’19]:

Proposition (Compatibility)
Let k | l | m and f : Fpk ↪→ Fpl , g : Fpl ↪→ Fpm , h : Fpk ↪→ Fpm the
standard embeddings. Then we have g ◦ f = h.

Proposition (Complexity)
Given a collection of Conway polynomials of degree up to d, for any
k | l | pi − 1, i ≤ d
I Computing a standard solution αk takes Õ(k2)

I Given αk and αl, computing the standard embedding
f : Fpk ↪→ Fpl takes Õ(l2)

39 / 42

Introduction Single extension Many extensions

IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.

 0.1

 1

 10

 100

 1000

 50 100 150 200

T
im

e
(m

s)

Degree of the algebra
 50 100 150 200

L
ev

el
 o

f
th

e
d
es

ti
n
at

io
n
 a

lg
eb

ra

Degree of the destination algebra

 10

 30

 50

 70

 90

Figure: Timings for computing αk (left, logscale), and for computing
Fp2 ↪→ Fpk (right, logscale) for p = 3.

40 / 42

Introduction Single extension Many extensions

CONCLUSION, OPEN PROBLEMS

I We implicitly assume that we have compatible roots ζ (i.e.
ζk = (ζl)

l/k for k | l)
I In practice, this is done using Conway polynomials

I With Conway polynomials up to degree d, we can compute
embeddings to finite fields up to any degree k | pi− 1, i ≤ d
I quasi-quadratic complexity

Open problems:
I Make this work less standard, but more practical
I Can we replace the Conway polynomials by other

polynomials?

41 / 42

Introduction Single extension Many extensions

Thank you!

42 / 42

	Introduction
	Single extension
	Motivation
	Bilinear complexity
	Symmetries

	Many extensions
	Context
	Bosma, Canon and Steel's framework
	Standard lattices

