Single extension

Many extensions

Efficient Arithmetic of Finite Field Extensions

Édouard Rousseau

July 12, 2021 PhD Defense

Introduction

WHAT ARE FINITE FIELDS?

In mathematics, we study sets of numbers:

- The set of natural numbers \mathbb{N} : 0, 1, 2, 3, ...
- The set of integers $\mathbb{Z}: ..., -2, -1, 0, 1, 2, ...$
- The set of rational fractions $\mathbb{Q}: 0, 1, \frac{1}{2}, \frac{1}{3}, -\frac{2}{7}, \dots$
- The set of real numbers \mathbb{R} : 0, 1, $\frac{1}{2}$, $-\frac{2}{7}$, $\sqrt{2}$, π , ...
- and operations between these numbers:

$$1+2$$
 in \mathbb{N}

•
$$3 - (-2)$$
 in \mathbb{Z}

- \blacktriangleright 5 $\times \frac{2}{3}$ in \mathbb{Q}
- $\blacktriangleright \sqrt{2}/3$ in \mathbb{R}
- ► A field is a set of numbers with operations +, -, ×, /
- It is called finite when it contains only a finite number of elements

ARITHMETIC OF EXTENSIONS

- ► The simplest example of finite field is F_p = Z/pZ = {0,1,..., p − 1}, where all the operations are taken modulo a prime number p.
- \blacktriangleright \mathbb{F}_p has *p* elements
 - There exists exactly one finite field of size p^k for all $k \ge 1$
 - The field of size p^k , \mathbb{F}_{p^k} , is an **extension** of \mathbb{F}_p
 - We have $\mathbb{F}_p \subset \mathbb{F}_{p^k}$
- We are interested in computer algebra
 - Particularly in the arithmetic of \(\mathbb{F}_{p^k}\), *i.e.* how to perform operations in \(\mathbb{F}_{p^k}\) efficiently, on a computer

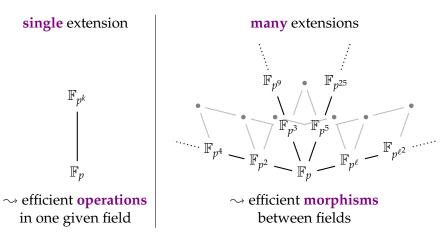
APPLICATIONS OF FINITE FIELDS

Finite fields are widely used in many areas:

- number theory
- algebraic geometry
- coding theory
- cryptography

GOALS

- Improve the arithmetic in finite field extensions
- Two directions of study



CONTRIBUTIONS

Published in the *International Symposium on Symbolic and Algebraic Computation* (ISSAC):

- Lattices of compatibly embedded finite fields in Nemo/Flint, Luca De Feo, Hugues Randriambololona, and É. R., 2018
- Standard lattices of compatibly embedded finite fields, Luca De Feo, Hugues Randriambololona and É. R., 2019

Published in the *International Workshop on the Arithmetic of Finite Fields* (WAIFI):

 Trisymmetric multiplication formulae in finite fields, Hugues Randriambololona and É. R., 2020

Single extension

Notation: \mathbb{F}_{p^k} denotes *the* finite field with p^k elements

 $\mathbb{F}_{p^k} \cong \mathbb{F}_p[X]/(P(X))$

• $P \in \mathbb{F}_p[X]$ is an **irreducible** polynomial of degree *k* Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

• normal basis:
$$(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{k-1}})$$

• monomial basis:
$$(1, \bar{X}, \dots, \bar{X}^{k-1})$$

Notation: \mathbb{F}_{p^k} denotes *the* finite field with p^k elements

 $\mathbb{F}_{p^k} \cong \mathbb{F}_p[X]/(P(X))$

• $P \in \mathbb{F}_p[X]$ is an **irreducible** polynomial of degree *k* Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

fast, but only possible for small fields

• normal basis: $(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{k-1}})$

• monomial basis:
$$(1, \overline{X}, \dots, \overline{X}^{k-1})$$

Notation: \mathbb{F}_{p^k} denotes *the* finite field with p^k elements

 $\mathbb{F}_{p^k} \cong \mathbb{F}_p[X]/(P(X))$

• $P \in \mathbb{F}_p[X]$ is an **irreducible** polynomial of degree *k* Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

fast, but only possible for small fields

• normal basis: $(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{k-1}})$

fast Frobenius evaluation but slow multiplication

• monomial basis: $(1, \bar{X}, \dots, \bar{X}^{k-1})$

Notation: \mathbb{F}_{p^k} denotes *the* finite field with p^k elements

 $\mathbb{F}_{p^k} \cong \mathbb{F}_p[X]/(P(X))$

• $P \in \mathbb{F}_p[X]$ is an **irreducible** polynomial of degree *k* Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

fast, but only possible for small fields

• normal basis: $(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{k-1}})$

fast Frobenius evaluation but slow multiplication

- monomial basis: $(1, \bar{X}, \dots, \bar{X}^{k-1})$
 - commonly used representation, easy to construct
 - multiplication slower than addition

• Computations in an extension \mathbb{F}_{p^k}

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
 - Karatsuba (1962)

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
 - Karatsuba (1962)
 - Toom-Cook (1963), evaluation-interpolation techniques

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
 - Karatsuba (1962)
 - Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
 - Karatsuba (1962)
 - Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)
 - ▶ ...

- Computations in an extension \mathbb{F}_{p^k}
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- A lot of litterature on the subject
 - Karatsuba (1962)
 - Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)
 - ▶ ...
 - $O(k \log k)$ algorithm [Harvey, Van Der Hoeven '19]

MODELS OF COMPLEXITY

\mathcal{A} an \mathbb{F}_p -algebra

- algebraic complexity: we count all operations $+, \times$ in \mathbb{F}_p
- **bilinear** complexity: we count only the multiplications
 - nice results with polynomials: Karatsuba's algorithm
 - and with matrices: Strassen's algorithm
- When $\mathcal{A} = \mathbb{F}_{p^k}$:
 - theoretical interest
 - links with coding theory
 - links with algebraic geometry

- $\blacktriangleright \mathbb{F}_{p^k} \text{ an extension of } \mathbb{F}_p$
- bilinear complexity: number of subproducts in F_p needed to compute a product in F_{pk}

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$
$$a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$$

- $\blacktriangleright \mathbb{F}_{p^k} \text{ an extension of } \mathbb{F}_p$
- bilinear complexity: number of subproducts in F_p needed to compute a product in F_{pk}

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

 $\mathbf{a}_0\mathbf{b}_0 + (\mathbf{a}_0\mathbf{b}_1 + \mathbf{a}_1\mathbf{b}_0)X + \mathbf{a}_1\mathbf{b}_1X^2$

- $\blacktriangleright \mathbb{F}_{p^k} \text{ an extension of } \mathbb{F}_p$
- bilinear complexity: number of subproducts in F_p needed to compute a product in F_{pk}

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

 $c_0 + (c_2 - c_1 - c_0)X + c_1 X^2$

with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

- $\blacktriangleright \mathbb{F}_{p^k} \text{ an extension of } \mathbb{F}_p$
- bilinear complexity: number of subproducts in F_p needed to compute a product in F_{pk}

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

 $\mathbf{c_0} + (\mathbf{c_2} - \mathbf{c_1} - \mathbf{c_0})X + \mathbf{c_1}X^2$

with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

- \mathbb{F}_{p^k} an extension of \mathbb{F}_p
- bilinear complexity: number of subproducts in F_p needed to compute a product in F_{pk}

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

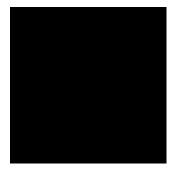
 $\mathbf{c_0} + (\mathbf{c_2} - \mathbf{c_1} - \mathbf{c_0})X + \mathbf{c_1}X^2$

with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

Image: Book of the second s

Many extensions

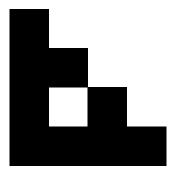


Single extension

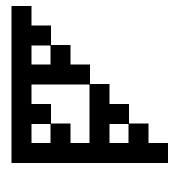
Many extensions

COMPLEXITY OF KARATSUBA'S ALGORITHM

Degree 2: 3 multiplications instead of 4



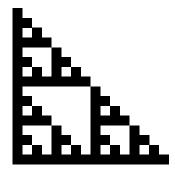
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy



- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Single extension

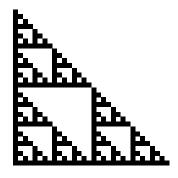
Many extensions



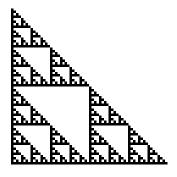
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Single extension

Many extensions



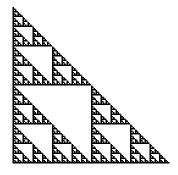
- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O(n^{1.58})$ instead of $O(n^2)$



- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Single extension

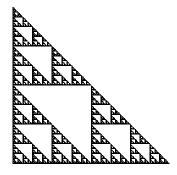
Many extensions



- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Single extension

Many extensions



- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Asymptotically: $O(n^{1.58})$ instead of $O(n^2)$

BILINEAR COMPLEXITY: DEFINITION

Definition

The **bilinear complexity** of the product in \mathbb{F}_{p^k} is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathbb{F}_{p^k}$

$$xy = \sum_{j=1}^r \varphi_j(x)\psi_j(y) \cdot \alpha_j$$

with φ_j, ψ_j linear forms and α_j elements of \mathbb{F}_{p^k} .

BILINEAR COMPLEXITY: DEFINITION

Definition

The **bilinear complexity** of the product in \mathbb{F}_{p^k} is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathbb{F}_{p^k}$

$$xy = \sum_{j=1}^r \varphi_j(\mathbf{x})\psi_j(\mathbf{y}) \cdot \alpha_j$$

with φ_j, ψ_j linear forms and α_j elements of \mathbb{F}_{p^k} .

- $\varphi_i(x)$: linear combination of the coordinates x_i of x
- $\psi_j(y)$: linear combination of the coordinates y_i of y

BILINEAR COMPLEXITY: DEFINITION

Definition

The **bilinear complexity** of the product in \mathbb{F}_{p^k} is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathbb{F}_{p^k}$

$$xy = \sum_{j=1}^r \varphi_j(\mathbf{x})\psi_j(\mathbf{y}) \cdot \alpha_j$$

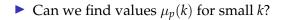
with φ_j, ψ_j linear forms and α_j elements of \mathbb{F}_{p^k} .

- $\varphi_i(x)$: linear combination of the coordinates x_i of x
- $\psi_j(y)$: linear combination of the coordinates y_i of y

• $\mu_p(k)$ = bilinear complexity of the product in \mathbb{F}_{p^k}

Two independent questions:

• What is the asymptotic behaviour of $\mu_p(k)$?



• $\mu_p(k)$ = bilinear complexity of the product in \mathbb{F}_{p^k}

Two independent questions:

- What is the asymptotic behaviour of $\mu_p(k)$?
 - $\mu_p(k)$ is **linear** in *k*

• Can we find values $\mu_p(k)$ for small *k*?

• $\mu_p(k)$ = bilinear complexity of the product in \mathbb{F}_{p^k}

Two independent questions:

- What is the asymptotic behaviour of $\mu_p(k)$?
 - $\mu_p(k)$ is **linear** in *k*
 - Evaluation-interpolation techniques:

• Can we find values $\mu_p(k)$ for small k?

• $\mu_p(k)$ = bilinear complexity of the product in \mathbb{F}_{p^k}

Two independent questions:

- What is the asymptotic behaviour of $\mu_p(k)$?
 - $\mu_p(k)$ is **linear** in *k*
 - Evaluation-interpolation techniques:
 - ► [Chudnovsky-Chudnovsky '87]
 - [Shparlinski-Tsfasman-Vladut '92]
 - ▶ [Ballet '99]

▶ ...

- [Randriambololona '12]
- Can we find values $\mu_p(k)$ for small *k*?

• $\mu_p(k)$ = bilinear complexity of the product in \mathbb{F}_{p^k}

Two independent questions:

- What is the asymptotic behaviour of $\mu_p(k)$?
 - $\mu_p(k)$ is **linear** in *k*
 - Evaluation-interpolation techniques:
 - [Chudnovsky-Chudnovsky '87]
 - [Shparlinski-Tsfasman-Vladut '92]
 - ▶ [Ballet '99]

▶ ...

- [Randriambololona '12]
- Can we find values $\mu_p(k)$ for small *k*?
 - Clever exhaustive search [BDEZ '12] [Covanov '18]

Single extension

SYMMETRIC DECOMPOSITIONS

Classic decompositions
$$xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$$
 $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

Single extension

SYMMETRIC DECOMPOSITIONS

Classic decompositions
$$xy = \sum_{j=1}^{r} \varphi_j(x) \psi_j(y) \cdot \alpha_j$$
 $yx = xy = \sum_{j=1}^{r} \varphi_j(x) \varphi_j(y) \cdot \alpha_j$

SYMMETRIC DECOMPOSITIONS

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x) \psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x) \varphi_j(y) \cdot \alpha_j$

Notation: for \mathbb{F}_{p^k} , we note $\mu_p^{\text{sym}}(k)$ the minimal length *r* in a **symmetric** decomposition

SYMMETRIC DECOMPOSITIONS

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

Notation: for \mathbb{F}_{p^k} , we note $\mu_p^{\text{sym}}(k)$ the minimal length *r* in a **symmetric** decomposition

• Asymptotics: $\mu_p^{\text{sym}}(k)$ is linear in k

SYMMETRIC DECOMPOSITIONS

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

Notation: for \mathbb{F}_{p^k} , we note $\mu_p^{\text{sym}}(k)$ the minimal length *r* in a **symmetric** decomposition

- Asymptotics: $\mu_p^{\text{sym}}(k)$ is linear in k
- ▶ Small values: smaller search space ~→ faster algorithms

- every linear form $\varphi \in (\mathbb{F}_{p^k})^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^k}$, with Tr the trace of $\mathbb{F}_{p^k}/\mathbb{F}_p$
- we can rewrite the formula

$$xy = \sum_{j=1}^r \varphi_j(x)\varphi_j(y) \cdot \beta_j$$

- every linear form $\varphi \in (\mathbb{F}_{p^k})^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^k}$, with Tr the trace of $\mathbb{F}_{p^k}/\mathbb{F}_p$
- we can rewrite the formula

$$xy = \sum_{j=1}^{r} \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \beta_j$$

- every linear form $\varphi \in (\mathbb{F}_{p^k})^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^k}$, with Tr the trace of $\mathbb{F}_{p^k}/\mathbb{F}_p$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

with $\lambda_j \in \mathbb{F}_p$ scalars

- every linear form $\varphi \in (\mathbb{F}_{p^k})^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^k}$, with Tr the trace of $\mathbb{F}_{p^k}/\mathbb{F}_p$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\boldsymbol{\alpha}_j x) \operatorname{Tr}(\boldsymbol{\alpha}_j y) \cdot \boldsymbol{\alpha}_j$$

with $\lambda_i \in \mathbb{F}_p$ scalars

• we call these formulae trisymmetric decompositions

- every linear form $\varphi \in (\mathbb{F}_{p^k})^{\vee}$ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{p^k}$, with Tr the trace of $\mathbb{F}_{p^k}/\mathbb{F}_p$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\boldsymbol{\alpha}_j x) \operatorname{Tr}(\boldsymbol{\alpha}_j y) \cdot \boldsymbol{\alpha}_j$$

with $\lambda_i \in \mathbb{F}_p$ scalars

- we call these formulae trisymmetric decompositions
- we note $\mu_p^{\text{tri}}(k)$ the minimal *r* in such formulae

$$\blacktriangleright \ \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

•
$$x, y \in \mathbb{F}_{3^2}, x = x_0 + x_1 \zeta \text{ and } y = y_0 + y_1 \zeta$$

•
$$\mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

• $x, y \in \mathbb{F}_{3^2}, x = x_0 + x_1\zeta$ and $y = y_0 + y_1\zeta$
 $(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$

•
$$\mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

• $x, y \in \mathbb{F}_{3^2}, x = x_0 + x_1\zeta$ and $y = y_0 + y_1\zeta$
 $(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$

$$\begin{array}{rcl} xy & = & -\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1 - \operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\ & & + \operatorname{Tr}((\zeta - 1) \times x) \operatorname{Tr}((\zeta - 1) \times y) \cdot (\zeta - 1) \end{array}$$

•
$$\mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

• $x, y \in \mathbb{F}_{3^2}, x = x_0 + x_1\zeta$ and $y = y_0 + y_1\zeta$
 $(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$

$$\begin{array}{rcl} xy & = & -\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1 - \operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\ & & + \operatorname{Tr}((\zeta - 1) \times x) \operatorname{Tr}((\zeta - 1) \times y) \cdot (\zeta - 1) \end{array}$$

with

$$\begin{cases} \operatorname{Tr}(x) \operatorname{Tr}(y) &= (x_0 - x_1)(y_0 - y_1) \\ \operatorname{Tr}((\zeta - 1)x) \operatorname{Tr}((\zeta - 1)y) &= (x_0 + x_1)(y_0 + y_1) \\ \operatorname{Tr}(\zeta x) \operatorname{Tr}(\zeta y) &= x_0 y_0 \end{cases}$$

Link with other decompositions:

$$\mu_p(k) \le \mu_p^{\rm sym}(k) \le \mu_p^{\rm tri}(k)$$

Link with other decompositions:

$$\mu_p(k) < \mu_p^{\text{sym}}(k) < \mu_p^{\text{tri}}(k)$$

Link with other decompositions:

$$\mu_p(k) < \mu_p^{\text{sym}}(k) < \mu_p^{\text{tri}}(k)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $p = 2, m \ge 3$ *.*

Link with other decompositions:

$$\mu_p(k) < \mu_p^{\text{sym}}(k) < \mu_p^{\text{tri}}(k)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $p = 2, m \ge 3$. Results from [Randriambololona, R. '20]:

 Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in F_{pk}

Link with other decompositions:

$$\mu_p(k) < \mu_p^{\text{sym}}(k) < \mu_p^{\text{tri}}(k)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $p = 2, m \ge 3$. Results from [Randriambololona, R. '20]:

 Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in F_{pk}

• Corollary: $\mu_p^{\text{tri}}(k)$ is also **linear** in *k*

Link with other decompositions:

$$\mu_p(k) < \mu_p^{\text{sym}}(k) < \mu_p^{\text{tri}}(k)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $p = 2, m \ge 3$. Results from [Randriambololona, R. '20]:

 Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in F_{pk}

• Corollary: $\mu_p^{\text{tri}}(k)$ is also linear in k

Small values: usual algorithms do not work

Link with other decompositions:

$$\mu_p(k) < \mu_p^{\text{sym}}(k) < \mu_p^{\text{tri}}(k)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $p = 2, m \ge 3$. Results from [Randriambololona, R. '20]:

 Asymptotics: linearity in k can be obtained for symmetric multilinear decompositions in F_{pk}

• Corollary: $\mu_p^{\text{tri}}(k)$ is also linear in k

- Small values: usual algorithms do not work
 - We provide an *ad hoc* exhaustive search algorithm

PARTIAL CONCLUSION

Results:

- Linearity of the symmetric multilinear complexity
- Linearity of the trisymmetric complexity
- New algorithm to find trisymmetric decompositions

PARTIAL CONCLUSION

Results:

- Linearity of the symmetric multilinear complexity
- Linearity of the trisymmetric complexity
- New algorithm to find trisymmetric decompositions

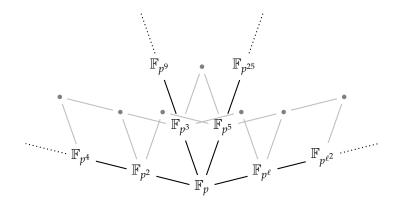
Future work:

- Find better bounds for the linearity of μ_p^{tri}
- Find algorithms exploiting the symmetries in the trisymmetric decompositions

Many extensions

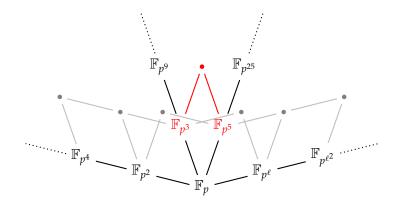
CONTEXT

- Use of Computer Algebra System (CAS)
- ▶ Use of many extensions of a prime finite field **F**_{*p*}
- Computations in $\overline{\mathbb{F}}_p$.



CONTEXT

- Use of Computer Algebra System (CAS)
- Use of many extensions of a prime finite field \mathbb{F}_p
- Computations in $\overline{\mathbb{F}}_p$.

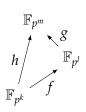


EMBEDDINGS

- When $k \mid l$, we know $\mathbb{F}_{p^k} \hookrightarrow \mathbb{F}_{p^l}$
 - How to compute an embedding efficiently?
 - There are several embeddings, how to choose?
- Naive algorithm: if $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(P(x))$, find a root ρ of P in \mathbb{F}_{p^l} and map \bar{x} to ρ . Complexity strictly larger than $\tilde{O}(k^2)$.
- Lots of other solutions in the litterature:
 - ▶ [Lenstra '91]
 - [Allombert '02]
 - [Rains '96]
 - ▶ [Narayanan '18]

COMPATIBILITY

F_{p^k}, F_{p^l}, F_{p^m} three finite fields with k | l | m
 f: F_{p^k} → F_{p^l}, g: F_{p^l} → F_{p^m}, h: F_{p^k} → F_{p^m} embeddings
 Compatibility:



In: p = 17; Fp = GF(p); FpX.<x> = Fp[]
 # We create finite fields of degree 12, 24, 48
 P12, P24 = x^12 + x + 2, x^24 + x^2 + 2*x + 7
 P48 = x^48 + x^2 + 2*x + 6
 GFp12 = FiniteField(p^12, 'x12', modulus=P12)
 GFp24 = FiniteField(p^24, 'x24', modulus=P24)
 GFp48 = FiniteField(p^48, 'x48', modulus=P48)
 # We (naively) compute the roots we need
 a = P12.any_root(GFp24) # Image of 'x12' in GFp24
 b = P24.any_root(GFp48) # Image of 'x12' in GFp48
 c = P12.any_root(GFp48) # Image of 'x12' in GFp48
 a # We print 'a'

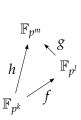
Out: 6*x24^23 + 15*x24^22 + ... + 12*x24 + 16

COMPATIBILITY

F_{p^k}, F_{p^l}, F_{p^m} three finite fields with k | l | m

 f: F_{p^k} → F_{p^l}, g: F_{p^l} → F_{p^m}, h: F_{p^k} → F_{p^m} embeddings

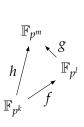
 Compatibility:



 $g \circ f \stackrel{?}{=} h$

24
8
8
4

COMPATIBILITY



 $g \circ f \stackrel{?}{=} h$

In:	p = 17; Fp = GF(p); FpX. <x> = Fp[] # We create finite fields of degree 12, 24, 48 P12, P24 = $x^{12} + x + 2$, $x^{24} + x^{2} + 2*x + 7$ P48 = $x^{48} + x^{2} + 2*x + 6$</x>
	<pre>GFp12 = FiniteField(p^12, 'x12', modulus=P12)</pre>
	GFp24 = FiniteField(p^24, 'x24', modulus=P24)
	GFp48 = FiniteField(p^48, 'x48', modulus=P48)
	# We (naively) compute the roots we need
	<pre>a = P12.any_root(GFp24) # Image of 'x12' in GFp24</pre>
	<pre>b = P24.any_root(GFp48) # Image of 'x24' in GFp48</pre>
	<pre>c = P12.any_root(GFp48) # Image of 'x12' in GFp48</pre>
	a # We print 'a'
Out:	$6 \times x24^{23} + 15 \times x24^{22} + \ldots + 12 \times x24 + 16$
	# We map 'x24' to 'b'
In:	c == a.polynomial()(b)
Out:	False

Definition (*l*-th Conway polynomials *C*_{*l*})

- degree *l*, irreducible, monic
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^l}^{\times}$)

• norm-compatible (i.e.
$$C_k\left(X^{\frac{p^l-1}{p^k-1}}\right) = 0 \mod C_l$$
 if $k \mid l$)

Definition (*l*-th Conway polynomials *C*_{*l*})

- degree *l*, irreducible, monic
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^l}^{\times}$)

• norm-compatible (i.e.
$$C_k\left(X^{\frac{p^l-1}{p^k-1}}\right) = 0 \mod C_l$$
 if $k \mid l$)

Standard polynomials

Definition (*l*-th Conway polynomials *C*_{*l*})

- degree *l*, irreducible, monic
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^l}^{\times}$)

• norm-compatible (i.e.
$$C_k\left(X^{\frac{p^l-1}{p^k-1}}\right) = 0 \mod C_l$$
 if $k \mid l$)

- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}_{p^{k-1}}^{p^{l}-1} \qquad \tilde{O}(l^{2})$

Definition (*l*-th Conway polynomials *C*_{*l*})

- degree *l*, irreducible, monic
- primitive (*i.e.* its roots generate $\mathbb{F}_{p^l}^{\times}$)

• norm-compatible (i.e.
$$C_k\left(X^{\frac{p^l-1}{p^k-1}}\right) = 0 \mod C_l$$
 if $k \mid l$)

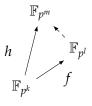
- Standard polynomials
- Compatible embeddings: $\bar{X} \mapsto \bar{Y}_{p^{k-1}}^{p^{l-1}} \qquad \tilde{O}(l^2)$
- Hard to compute (exponential complexity)

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework originally used in MAGMA
- Based on the naive embedding algorithm
- Allows user-defined finite fields
- Computations made on the fly

COMMON SUBFIELD

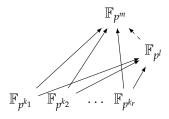
Generalization of the naive algorithm



- Consider α such that $\mathbb{F}_{p^l} = \mathbb{F}_p(\alpha)$
- Take ρ a root of $h(\operatorname{minpoly}_{\mathbb{F},k}(\alpha))$
- Map $\alpha \mapsto \rho$

We obtain $h = g \circ f$

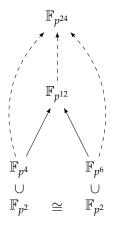
SEVERAL SUBFIELDS



- Consider α such that $\mathbb{F}_{p^l} = \mathbb{F}_p(\alpha)$
- Take ρ a root of $gcd_i(h_i(minpoly_{\mathbb{F}_{p^{k_i}}}(\alpha)))$
- Map $\alpha \mapsto \rho$
- ▶ This gives an embedding compatible with all subfields

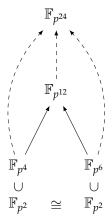
IMPLICIT ISOMORPHISMS

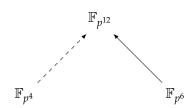
From implicit isomorphisms come compatibility conditions



IMPLICIT ISOMORPHISMS

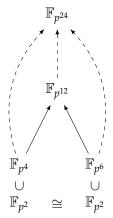
From implicit isomorphisms come compatibility conditions

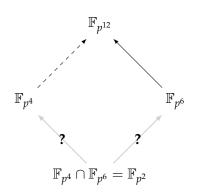


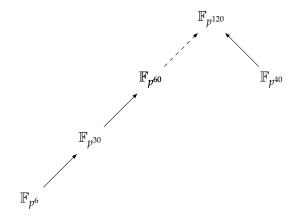


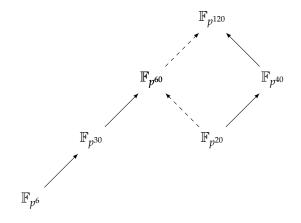
IMPLICIT ISOMORPHISMS

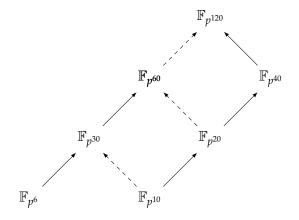
From implicit isomorphisms come compatibility conditions

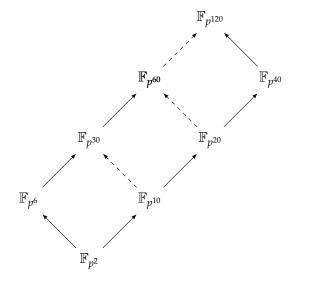


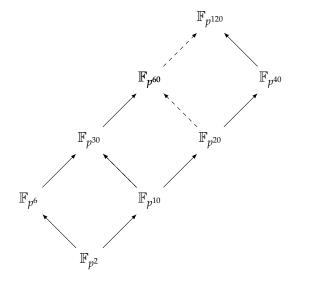


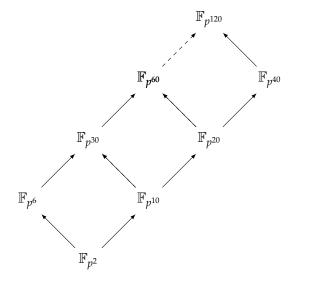


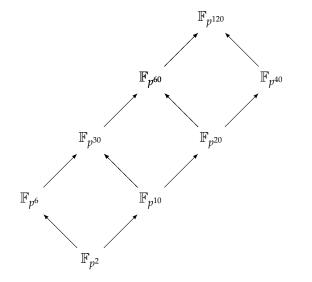












RESULTS

- Following [De Feo, Randriambololona, R. '18], Bosma-Canon-Steel framework is now part of the free Computer Algebra System Nemo
- It is practical but
 - based on the naive embedding algorithm
 superquadratic complexity
 - adding an extension is quadratic in the size of the lattice

Goals:

- Change the embedding algorithm
- Lessen the cost of adding an extension

IDEAS

- Plugging Allombert's embedding algorithm in Bosma, Cannon, and Steel
- Generalizing Bosma, Cannon, and Steel
- Generalizing Conway polynomials

Bring the best of both worlds!

Allombert's embedding algorithm

Based on Kummer theory

For
$$k \mid (p-1)$$
, we work in \mathbb{F}_{p^k} , and study
 $\sigma(x) = \zeta_k x$ (H90)

where $(\zeta_k)^k = 1$ and $\zeta_k \in \mathbb{F}_p \subset \mathbb{F}_{p^k}$

▶ When $k \mid l$ and $(\zeta_l)^{l/k} = \zeta_k$, from $\alpha_k \in \mathbb{F}_{p^k}$, $\alpha_l \in \mathbb{F}_{p^l}$ solutions of (H90), we can deduce an **embedding** of the form

$$\alpha_k \mapsto \kappa_{k,l} (\alpha_l)^{l/k}$$

with $\kappa_{k,l} \in \mathbb{F}_p$ a constant

Allombert and Bosma, Canon, and Steel

- ▶ Need to store one constant $\kappa_{k,l}$ for each pair $(\mathbb{F}_{p^k}, \mathbb{F}_{p^l})$
- The constant $\kappa_{k,l}$ depends on α_k and α_l

We would like to:

- get rid of the constants $\kappa_{k,l}$ (e.g. have $\kappa_{k,l} = 1$)
- equivalently, get "standard" solutions of (H90)
 - select solutions α_k, α_l that always define the same embedding
 - such that the constants $\kappa_{k,l}$ are well understood

STANDARD SOLUTIONS

Let
$$k | l | p - 1$$
, $(\zeta_l)^{l/k} = \zeta_k$

•
$$\alpha_k \in \mathbb{F}_{p^k}$$
 and $\alpha_l \in \mathbb{F}_{p^l}$ solutions of (H90) for ζ_k and ζ_l

•
$$(\forall k \mid l \mid p-1, \kappa_{k,l} = 1)$$
 implies $(\alpha_k)^k = (\alpha_l)^l = \zeta_{p-1}$

▶ We can use this property to define "standard solutions"

STANDARD SOLUTIONS

Let
$$k | l | p - 1$$
, $(\zeta_l)^{l/k} = \zeta_k$

• $\alpha_k \in \mathbb{F}_{p^k}$ and $\alpha_l \in \mathbb{F}_{p^l}$ solutions of (H90) for ζ_k and ζ_l

•
$$(\forall k \mid l \mid p-1, \kappa_{k,l} = 1)$$
 implies $(\alpha_k)^k = (\alpha_l)^l = \zeta_{p-1}$

We can use this property to define "standard solutions"

Definition (Standard solution)

Let k | p - 1 and $\alpha_k \in \mathbb{F}_{p^k}$ a solution of (H90) for $\zeta_k = (\zeta_{p-1})^{\frac{p-1}{k}}$, α_k is standard if $(\alpha_k)^k = \zeta_{p-1}$.

STANDARD SOLUTIONS

Let
$$k | l | p - 1$$
, $(\zeta_l)^{l/k} = \zeta_k$

•
$$\alpha_k \in \mathbb{F}_{p^k}$$
 and $\alpha_l \in \mathbb{F}_{p^l}$ solutions of (H90) for ζ_k and ζ_l

•
$$(\forall k \mid l \mid p-1, \kappa_{k,l} = 1)$$
 implies $(\alpha_k)^k = (\alpha_l)^l = \zeta_{p-1}$

We can use this property to define "standard solutions"

Definition (Standard solution)

Let k | p - 1 and $\alpha_k \in \mathbb{F}_{p^k}$ a solution of (H90) for $\zeta_k = (\zeta_{p-1})^{\frac{p-1}{k}}$, α_k is standard if $(\alpha_k)^k = \zeta_{p-1}$.

Definition (Standard polynomial)

All standard solutions α_k define the same irreducible polynomial of degree k, we call it the **standard polynomial** of degree k.

STANDARD EMBEDDINGS

Let
$$k \mid l \mid p - 1$$
, $(\zeta_l)^{l/k} = \zeta_k$

• α_k and α_l standard solutions of (H90) for ζ_k and ζ_l

STANDARD EMBEDDINGS

Let
$$k \mid l \mid p - 1$$
, $(\zeta_l)^{l/k} = \zeta_k$
 $\land \alpha_k$ and α_l standard solutions of (H90) for ζ_k and ζ_l
 $\land \kappa_{k,l} = 1$

STANDARD EMBEDDINGS

Let
$$k \mid l \mid p - 1$$
, $(\zeta_l)^{l/k} = \zeta_k$
 $\sim \alpha_k$ and α_l standard solutions of (H90) for ζ_k and ζ_l
 $\sim \kappa_{k,l} = 1$
 \sim The embedding
 $\alpha_k \mapsto (\alpha_l)^{l/k}$

is **standard** too (only depends on ζ_{p-1}).

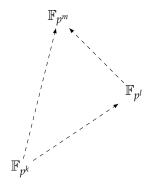
WHAT HAPPENS WHEN $k \nmid p - 1$?

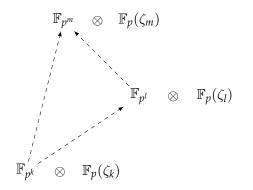
Let
$$p \nmid k$$
 and $k \nmid p - 1$
• no *k*-th root of unity ζ_k in \mathbb{F}_p
• add them! Consider $A_k = \mathbb{F}_{p^k} \otimes \mathbb{F}_p(\zeta_k)$ instead of \mathbb{F}_{p^k}
 $(\sigma \otimes 1)(x) = (1 \otimes \zeta_k)x$ (H90')

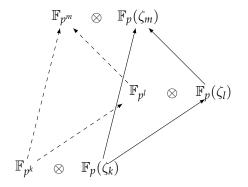
Allombert's algorithm still works!

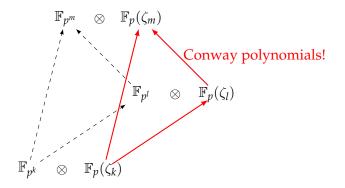
If $k \mid l$ and $(\zeta_l)^{l/k} = \zeta_k$

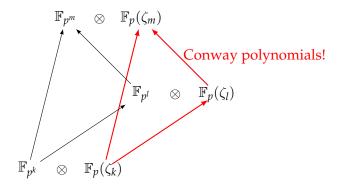
- ► Still possible to find standard solutions α_k, α_l of (H90')
- $\kappa_{k,l} \neq 1$ but easy to compute
- **Standard embedding** from α_k and α_l



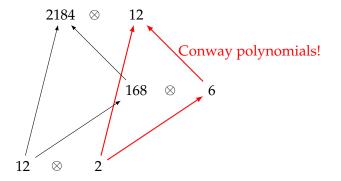








SCHEME OF OUR WORK



Example of degrees involved in the case p = 5.

COMPATIBILITY AND COMPLEXITY

Results from [De Feo, Randriambololona, R. '19]:

Proposition (Compatibility)

Let $k \mid l \mid m$ and $f : \mathbb{F}_{p^k} \hookrightarrow \mathbb{F}_{p^l}, g : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}, h : \mathbb{F}_{p^k} \hookrightarrow \mathbb{F}_{p^m}$ the standard embeddings. Then we have $g \circ f = h$.

Proposition (Complexity)

Given a collection of Conway polynomials of degree up to d, for any $k \mid l \mid p^i - 1, i \leq d$

- Computing a standard solution α_k takes $\tilde{O}(k^2)$
- Given α_k and α_l , computing the standard embedding $f : \mathbb{F}_{p^k} \hookrightarrow \mathbb{F}_{p^l}$ takes $\tilde{O}(l^2)$

IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.

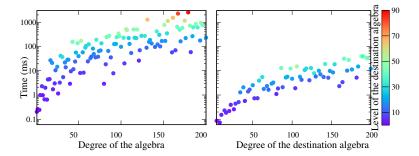


Figure: Timings for computing α_k (left, logscale), and for computing $\mathbb{F}_{p^2} \hookrightarrow \mathbb{F}_{p^k}$ (right, logscale) for p = 3.

CONCLUSION, OPEN PROBLEMS

• We implicitly assume that we have **compatible roots** ζ (*i.e.* $\zeta_k = (\zeta_l)^{l/k}$ for $k \mid l$)

In practice, this is done using Conway polynomials

- ▶ With Conway polynomials up to degree *d*, we can compute embeddings to finite fields up to any degree $k | p^i 1, i \le d$
 - quasi-quadratic complexity

Open problems:

- Make this work less standard, but more practical
- Can we replace the Conway polynomials by other polynomials?

Thank you!