Symmetries 000000000000

Trisymmetric multiplication formulas in finite fields

Hugues Randriambololona, Édouard Rousseau

October 22, 2020 Séminaire CRYPTO

FINITE FIELDS IN CRYPTOGRAPHY

Finite fields are (almost) everywhere in **public key** cryptography:

- discrete logarithm
- elliptic curves
- isogenies
- code-based cryptography
- multivariate cryptography

FINITE FIELDS IN CRYPTOGRAPHY

Finite fields are (almost) everywhere in **public key** cryptography:

- discrete logarithm
- elliptic curves
- isogenies
- code-based cryptography
- multivariate cryptography
- used in 3 of the 4 main families of post-quantum protocols

FINITE FIELDS IN CRYPTOGRAPHY

Finite fields are (almost) everywhere in **public key** cryptography:

- discrete logarithm
- elliptic curves
- isogenies
- code-based cryptography
- multivariate cryptography
- used in 3 of the 4 main families of post-quantum protocols
 - bright future!

OTHER APPLICATIONS

Finite fields are also widely used in

- coding theory
- algebraic geometry
- number theory

OTHER APPLICATIONS

Finite fields are also widely used in

- coding theory
- algebraic geometry
- number theory
- motivates their study
 - algorithmic study: a part of computer algebra

FINITE FIELD ARITHMETIC

Notation: \mathbb{F}_{q^m} denotes *the* finite field with q^m elements

 $\mathbb{F}_{q^m} \cong \mathbb{F}_q[X]/(P(X))$

▶ $P \in \mathbb{F}_q[X]$ is an **irreducible** polynomial of degree *m* Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

• normal basis:
$$(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{m-1}})$$

• monomial basis:
$$(1, \bar{X}, \dots, \bar{X}^{m-1})$$

FINITE FIELD ARITHMETIC

Notation: \mathbb{F}_{q^m} denotes *the* finite field with q^m elements

 $\mathbb{F}_{q^m} \cong \mathbb{F}_q[X]/(P(X))$

▶ $P \in \mathbb{F}_q[X]$ is an **irreducible** polynomial of degree *m*

Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

fast, but only possible for small fields

• normal basis: $(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{m-1}})$

monomial basis:
$$(1, \bar{X}, \dots, \bar{X}^{m-1})$$

FINITE FIELD ARITHMETIC

Notation: \mathbb{F}_{q^m} denotes *the* finite field with q^m elements

 $\mathbb{F}_{q^m} \cong \mathbb{F}_q[X]/(P(X))$

▶ $P \in \mathbb{F}_q[X]$ is an **irreducible** polynomial of degree *m*

Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

fast, but only possible for small fields

• normal basis: $(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{m-1}})$

fast Frobenius evaluation but slow multiplication

• monomial basis: $(1, \bar{X}, \dots, \bar{X}^{m-1})$

FINITE FIELD ARITHMETIC

Notation: \mathbb{F}_{q^m} denotes *the* finite field with q^m elements

 $\mathbb{F}_{q^m} \cong \mathbb{F}_q[X]/(P(X))$

▶ $P \in \mathbb{F}_q[X]$ is an **irreducible** polynomial of degree *m*

Some possible **representations**:

 Zech's logarithm: elements are represented as generator powers

fast, but only possible for small fields

- normal basis: $(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{m-1}})$
 - fast Frobenius evaluation but slow multiplication
- monomial basis: $(1, \bar{X}, \dots, \bar{X}^{m-1})$
 - commonly used representation, easy to construct
 - multiplication slower than addition

Computations in an algebra A over F_q
typically F_{q^m} with the monomial basis

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ③

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ③
- we want to study/reduce the cost of multiplication

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ③
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ③
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ③
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - ► Toom-Cook (1963), evaluation-interpolation techniques

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ③
 - additions, scalar multiplications: cheap ③
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - ► Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ②
 - additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - ► Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)
 - ▶ ...

- Computations in an algebra \mathcal{A} over \mathbb{F}_q
 - typically \mathbb{F}_{q^m} with the **monomial** basis
 - multiplications: expensive ②
 - additions, scalar multiplications: cheap ③
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
 - Karatsuba (1962)
 - ► Toom-Cook (1963), evaluation-interpolation techniques
 - Schönhage-Strassen (1971)
 - ▶ ...
 - ► *O*(*m* log *m*) algorithm [Harvey, Van Der Hoeven '19]

- \mathcal{A} an algebra over \mathbb{K}
- ▶ bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

 $(a_0 + a_1 X)(b_0 + b_1 X) =$ $a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$

- \mathcal{A} an algebra over \mathbb{K}
- ▶ **bilinear complexity:** number of subproduct in K needed to compute a product in *A*

Karatsuba:

 $(a_0 + a_1 X)(b_0 + b_1 X) =$ $a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$

- \mathcal{A} an algebra over \mathbb{K}
- ▶ bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

 $c_0 + (c_2 - c_1 - c_0)X + c_1 X^2$

with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

- \mathcal{A} an algebra over \mathbb{K}
- ▶ bilinear complexity: number of subproduct in K needed to compute a product in A

Karatsuba:

$$(a_0 + a_1 X)(b_0 + b_1 X) =$$

$$c_0 + (c_2 - c_1 - c_0)X + c_1 X^2$$

with

$$\begin{cases} c_0 = a_0 b_0 \\ c_1 = a_1 b_1 \\ c_2 = (a_0 + a_1)(b_0 + b_1) \end{cases}$$

Symmetries 000000000000

Symmetries 000000000000

COMPLEXITY OF KARATSUBA'S ALGORITHM

Degree 2: 3 multiplications instead of 4

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Symmetries 00000000000

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Symmetries 00000000000

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Symmetries 00000000000

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

Symmetries 00000000000

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O(n^{1.58})$ instead of $O(n^2)$

2×2 matrix multiplication:

$$\begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{pmatrix} \begin{pmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{pmatrix} = \begin{pmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{pmatrix}$$

2×2 matrix multiplication:

$$\begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{pmatrix} \begin{pmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{pmatrix} = \begin{pmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{pmatrix}$$

2×2 matrix multiplication:

$$\begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{pmatrix} \begin{pmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{pmatrix} = \begin{pmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{pmatrix}$$

Strassen's algorithm: you only need 7 multiplications!
BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$\begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{pmatrix} \begin{pmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{pmatrix} = \begin{pmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{pmatrix}$$

Strassen's algorithm: you only need 7 multiplications! that is optimal

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$\begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{pmatrix} \begin{pmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{pmatrix} = \begin{pmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{pmatrix}$$

Strassen's algorithm: you only need 7 multiplications!

- that is optimal
- the bilinear complexity of the 2 × 2 matrix multiplication is 7

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$\begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{pmatrix} \begin{pmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{pmatrix} = \begin{pmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{pmatrix}$$

Strassen's algorithm: you only need 7 multiplications!

- that is optimal
- the bilinear complexity of the 2 × 2 matrix multiplication is 7

Open question: what is the bilinear complexity of the 3×3 matrix multiplication?

BILINEAR COMPLEXITY: DEFINITION

Definition

The **bilinear complexity** of the product in A is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in A$

$$xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$$

with φ_j, ψ_j linear forms and α_j elements of \mathcal{A} .

BILINEAR COMPLEXITY: DEFINITION

Definition

The **bilinear complexity** of the product in A is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in A$

$$xy = \sum_{j=1}^r \varphi_j(x)\psi_j(y) \cdot \alpha_j$$

with φ_j, ψ_j linear forms and α_j elements of \mathcal{A} .

$$\varphi_j(x) = a_{1,j}x_1 + \dots + a_{n,j}x_n$$

$$\flat \ \psi_j(y) = b_{1,j}y_1 + \dots + b_{n,j}y_n$$

linear combinations of the coordinates x_i and y_i

BILINEAR COMPLEXITY: DEFINITION

Definition

The **bilinear complexity** of the product in A is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in A$

$$xy = \sum_{j=1}^r \varphi_j(x)\psi_j(y) \cdot \alpha_j$$

with φ_j, ψ_j linear forms and α_j elements of \mathcal{A} .

$$\blacktriangleright \varphi_j(x) = a_{1,j}x_1 + \dots + a_{n,j}x_n$$

$$\blacktriangleright \psi_j(y) = b_{1,j}y_1 + \dots + b_{n,j}y_n$$

linear combinations of the coordinates x_i and y_i

NOTATIONS AND QUESTIONS

- $\blacktriangleright \mathbb{K} = \mathbb{F}_q$
- $\mu_q(m)$ = bilinear complexity of the product in $\mathcal{A} = \mathbb{F}_{q^m}$

Two independent questions:

- What is the asymptotic comportment of $\mu_q(m)$?
- Can we find values $\mu_q(m)$ for small *m*?

ASYMPTOTICS

Lower bound from coding theory

► $2m-1 \leq \mu_q(m)$

ASYMPTOTICS

Lower bound from coding theory

► $2m-1 \leq \mu_q(m)$

Upper bounds, from evaluation-interpolation schemes

- ▶ [Chudnovsky-Chudnovsky '87]
- ▶ [Shparlinski-Tsfasman-Vladut ′92]
- ▶ [Ballet '08]
- ▶ [Randriambololona '12]
- ...

ASYMPTOTICS

Lower bound from coding theory

► $2m-1 \leq \mu_q(m)$

Upper bounds, from evaluation-interpolation schemes

- ▶ [Chudnovsky-Chudnovsky '87]
- ▶ [Shparlinski-Tsfasman-Vladut ′92]
- ▶ [Ballet '08]
- ▶ [Randriambololona '12]
- ▶ ...
- $\mu_q(m)$ is **linear** in *m*

Karatsuba again:

►
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Karatsuba again:

►
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Karatsuba again:

•
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

•
$$c_0 = P(0)Q(0) = PQ(0) = a_0b_0$$

Karatsuba again:

• $P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$

•
$$c_0 = P(0)Q(0) = PQ(0) = a_0b_0$$

• $c_1 = P(1)Q(1) = PQ(1) = (a_0 + a_1)(b_0 + b_1)$

Karatsuba again:

•
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Karatsuba again:

•
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Big news! Karatsuba is an evaluation-interpolation scheme! (on the **projective line** \mathbb{P}^1)

Karatsuba again:

•
$$P(X) = a_0 + a_1 X, Q(X) = b_0 + b_1 X$$

Big news! Karatsuba is an evaluation-interpolation scheme! (on the **projective line** \mathbb{P}^1)

•
$$c_0 = P(0)Q(0) = PQ(0) = a_0b_0$$

• $c_1 = P(1)Q(1) = PQ(1) = (a_0 + a_1)(b_0 + b_1)$
• $c_2 = c_\infty = P(\infty)Q(\infty) = PQ(\infty) = a_1b_1$
with $P(\infty) = \text{loading coefficient of } R$

with $R(\infty)$ = leading coefficient of R

When studying *A* = 𝔽_{*q^m*} for *m* → ∞, one needs many points of evaluation

 \rightsquigarrow use a curve on \mathbb{F}_q with many points of evaluation

How to find small values?

Possibilities:

- tighten the theoretical bounds (hard ②)
- find all formulas
 - clever algorithms for exhaustive search
 - ▶ [BDEZ '12]
 - ▶ [Covanov '18]

SYMMETRIC DECOMPOSITIONS

A commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

SYMMETRIC DECOMPOSITIONS

A commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

SYMMETRIC DECOMPOSITIONS

A commutative algebra

Classic decompositions $xy = \sum_{j=1}^{r} \varphi_j(x)\psi_j(y) \cdot \alpha_j$ $yx = xy = \sum_{j=1}^{r} \varphi_j(x)\varphi_j(y) \cdot \alpha_j$

Notation: for $\mathcal{A} = \mathbb{F}_{q^m}$, we note $\mu_q^{\text{sym}}(m)$ the minimal length *r* in a **symmetric** decomposition

Two questions:

Two questions:

Assymptotics:

 $\mu_q(m) \le \mu_q^{\rm sym}(m)$

Two questions:

Assymptotics:

 $\mu_q(m) \le \mu_q^{\rm sym}(m)$

Two questions:

Assymptotics:

 $\mu_q(m) \le \mu_q^{\rm sym}(m)$

• $\mu_q^{\text{sym}}(m)$ still linear in *m* • **Open question:** find *q* and *m* with

 $\mu_q(m) \neq \mu_q^{\rm sym}(m)$

Two questions:

Assymptotics:

 $\mu_q(m) \le \mu_q^{\rm sym}(m)$

• $\mu_q^{\text{sym}}(m)$ still linear in *m* • **Open question:** find *q* and *m* with

 $\mu_q(m) \neq \mu_q^{\rm sym}(m)$

Small values:

Two questions:

Assymptotics:

 $\mu_q(m) \le \mu_q^{\rm sym}(m)$

• $\mu_q^{\text{sym}}(m)$ still linear in *m* • **Open question:** find *q* and *m* with

 $\mu_q(m) \neq \mu_q^{\rm sym}(m)$

Small values:

▶ Smaller search space ~→ faster exhaustive search

 $\blacktriangleright \ \mathcal{A} = \mathbb{F}_{q^m}$

• every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$

we can rewrite the formula

$$xy = \sum_{j=1}^r \varphi_j(x)\varphi_j(y) \cdot \beta_j$$

 $\blacktriangleright \ \mathcal{A} = \mathbb{F}_{q^m}$

• every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$

we can rewrite the formula

$$xy = \sum_{j=1}^{r} \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \beta_j$$

- $\blacktriangleright \ \mathcal{A} = \mathbb{F}_{q^m}$
- every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

with $\lambda_j \in \mathbb{F}_q$ scalars

- $\blacktriangleright \ \mathcal{A} = \mathbb{F}_{q^m}$
- every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

with $\lambda_j \in \mathbb{F}_q$ scalars

• we call these formulas **trisymmetric** decompositions

- $\blacktriangleright \mathcal{A} = \mathbb{F}_{q^m}$
- every linear form φ can be written $x \mapsto \text{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^m}$, with Tr the trace of $\mathbb{F}_{q^m}/\mathbb{F}_q$
- we can rewrite the formula, and even ask $\beta_j = \lambda_j \alpha_j$

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

with $\lambda_j \in \mathbb{F}_q$ scalars

- we call these formulas **trisymmetric** decompositions
- we note $\mu_q^{\text{tri}}(m)$ the minimal *r* in such formulas

Bilinear complexity

Symmetries

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

•
$$\mathcal{A} = \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

•
$$x, y \in \mathcal{A}, x = x_0 + x_1 \zeta$$
 and $y = y_0 + y_1 \zeta$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

$$\blacktriangleright \mathcal{A} = \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

•
$$x, y \in \mathcal{A}, x = x_0 + x_1 \zeta$$
 and $y = y_0 + y_1 \zeta$

$$(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

•
$$\mathcal{A} = \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

• $x, y \in \mathcal{A}, x = x_0 + x_1\zeta$ and $y = y_0 + y_1\zeta$

$$(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$$

$$\begin{array}{rcl} xy & = & -\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1 - \operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\ & & + \operatorname{Tr}((\zeta - 1) \times x) \operatorname{Tr}((\zeta - 1) \times y) \cdot (\zeta - 1) \end{array}$$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

•
$$\mathcal{A} = \mathbb{F}_{3^2} \cong \mathbb{F}_3[z]/(z^2 - z - 1) \cong \mathbb{F}_3(\zeta)$$

• $x, y \in \mathcal{A}, x = x_0 + x_1\zeta$ and $y = y_0 + y_1\zeta$
 $(x_0 + x_1\zeta)(y_0 + y_1\zeta) = (x_0y_0 + x_1y_1) + (x_0y_1 + x_1y_0 + x_1y_1)\zeta$

$$\begin{array}{rcl} xy & = & -\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1 - \operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\ & & + \operatorname{Tr}((\zeta - 1) \times x) \operatorname{Tr}((\zeta - 1) \times y) \cdot (\zeta - 1) \end{array}$$

with

$$\begin{cases} \operatorname{Tr}(x) \operatorname{Tr}(y) &= (x_0 - x_1)(y_0 - y_1) \\ \operatorname{Tr}((\zeta - 1)x) \operatorname{Tr}((\zeta - 1)y) &= (x_0 + x_1)(y_0 + y_1) \\ \operatorname{Tr}(\zeta x) \operatorname{Tr}(\zeta y) &= x_0 y_0 \end{cases}$$
Symmetries

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \le \mu_q^{\text{sym}}(m) \le \mu_q^{\text{tri}}(m)$$

Symmetries

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $q = 2, m \ge 3$ *.*

ABOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$\mu_q(m) \leq \mu_q^{\text{sym}}(m) \leq \mu_q^{\text{tri}}(m)$$

Proposition (Randriambololona, '14)

Tri-symmetric decompositions always exist, except for $q = 2, m \ge 3$ *.*

Open question: find $q \ge 3$ and $m \ge 2$ with

 $\mu_q^{\rm sym}(m) \neq \mu_q^{\rm tri}(m)$

$$xy = \sum_{j=1}^{r} \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \beta_j$$

[BDEZ '12]
 [Covanov '18])

$$xy = \sum_{j=1}^{r} \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \beta_j$$

► [BDEZ '12]

▶ [Covanov '18])

• rely on the fact that the α_i and β_j are independent

$$xy = \sum_{j=1}^{r} \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \beta_j$$

- ► [BDEZ '12]
- ▶ [Covanov '18])
 - rely on the fact that the α_j and β_j are independent
 - no longer the case for trisymmetric decompositions

$$xy = \sum_{j=1}^{r} \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \beta_j$$

▶ [BDEZ '12]

▶ [Covanov '18])

• rely on the fact that the α_i and β_i are independent

no longer the case for trisymmetric decompositions

Trisymmetric decompositions:

$$xy = \sum_{j=1}^{r} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

Background	and	motivations	
0000			

Symmetries

COMPUTING TRISYMMETRIC DECOMPOSITIONS

• choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

Background	and	motivations	
0000			

COMPUTING TRISYMMETRIC DECOMPOSITIONS

• choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

▶ find (exhaustive search) elements in 𝔽_{q^m} of the form (1, *, ..., *) such that

$$b_1(x,y) = \sum_{j=1}^{r_1} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y)$$

Background	and	motivations	
0000			

COMPUTING TRISYMMETRIC DECOMPOSITIONS

• choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

▶ find (exhaustive search) elements in 𝔽_{q^m} of the form (1, *, ..., *) such that

$$b_1(x,y) = \sum_{j=1}^{r_1} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y)$$

$$xy - \sum_{j=1}^{r_1} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \alpha_j = (\mathbf{0}, b'_2(x, y), \dots, b'_m(x, y))$$

Background	and	motivations	
0000			

Symmetries

COMPUTING TRISYMMETRIC DECOMPOSITIONS

• choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

• find elements in \mathbb{F}_{q^m} of the form (0, 1, *, ..., *) such that

$$b'_2(x,y) = \sum_{j=r_1+1}^{r_2} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y)$$

Background	and	motivations	
0000			

Symmetries

COMPUTING TRISYMMETRIC DECOMPOSITIONS

• choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

• find elements in \mathbb{F}_{q^m} of the form (0, 1, *, ..., *) such that

$$b'_2(x,y) = \sum_{j=r_1+1}^{r_2} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y)$$

$$xy - \sum_{j=1}^{r_2} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \alpha_j = (0, 0, b_3''(x, y) \dots, b_m''(x, y))$$

Background	and	motivations	
0000			

Symmetries

COMPUTING TRISYMMETRIC DECOMPOSITIONS

• choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

• find elements in \mathbb{F}_{q^m} of the form (0, 0, 1, *, ..., *) such that

$$b_3''(x,y) = \sum_{j=r_2+1}^{r_3} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y)$$

Background	and	motivations	
0000			

Bilinear complexity

COMPUTING TRISYMMETRIC DECOMPOSITIONS

choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

▶ find elements in \mathbb{F}_{q^m} of the form (0, 0, 1, *, ..., *) such that

$$b_3''(x,y) = \sum_{j=r_2+1}^{r_3} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y)$$

and so on

Background	and	motivations	
0000			

Bilinear complexity

Symmetries

COMPUTING TRISYMMETRIC DECOMPOSITIONS

• choose a basis of
$$\mathbb{F}_{q^m}/\mathbb{F}_q$$

 $xy = (b_1(x, y), \dots, b_m(x, y))$

with b_i bilinear forms

▶ find elements in \mathbb{F}_{q^m} of the form (0, 0, 1, *, ..., *) such that

$$b_3''(x,y) = \sum_{j=r_2+1}^{r_3} \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y)$$

and so on

in the end, we obtain

$$xy = \sum_{j=1}^r \lambda_j \operatorname{Tr}(\alpha_j x) \operatorname{Tr}(\alpha_j y) \cdot \alpha_j$$

Some results for q = 3

field	μ_q	$\mu_q^{ m sym}$	$\mu_q^{ m tri}$
\mathbb{F}_{3^2}	3	3	3
\mathbb{F}_{3^3}	6	6	6
\mathbb{F}_{3^4}	9	9	9
\mathbb{F}_{3^5}	$9 \le \star \le 11$	11	11
\mathbb{F}_{3^6}	$11 \le \star \le 15$	$13 \le \star \le 15$	$13 \le \star \le 15$

Some results for q = 3

field	μ_q	$\mu_q^{ m sym}$	$\mu_q^{ m tri}$
\mathbb{F}_{3^2}	3	3	3
\mathbb{F}_{3^3}	6	6	6
\mathbb{F}_{3^4}	9	9	9
\mathbb{F}_{3^5}	$9 \le \star \le 11$	11	11
\mathbb{F}_{3^6}	$11 \le \star \le 15$	$13 \le \star \le 15$	$13 \le \star \le 15$

Symmetries

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd q, we have $\mu_q(2) = \mu_q^{tri}(2) = 3$.

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd *q*, we have $\mu_q(2) = \mu_q^{tri}(2) = 3$. **Experimental results:**

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd *q*, we have $\mu_q(2) = \mu_q^{tri}(2) = 3$. **Experimental results:**

• $\mu_3^{\text{tri}}(3) = 6$

•
$$\mu_p^{\text{tri}}(3) = 5$$
 for all primes $5 \le p \le 257$

▶
$$\mu_3^{\text{tri}}(4) = 9$$
, $\mu_5^{\text{tri}}(4) = 8$

•
$$\mu_p^{\text{tri}}(4) = 7$$
 for all primes $7 \le p \le 23$

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd q, we have $\mu_q(2) = \mu_q^{tri}(2) = 3$.

Experimental results:

Proposition

We have $\mu_q(n) \ge 2n - 1$ with equality if and only if $n < \frac{q}{2} + 1$.

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd q, we have $\mu_q(2) = \mu_q^{tri}(2) = 3$.

Experimental results:

Proposition

We have $\mu_q(n) \ge 2n - 1$ with equality if and only if $n < \frac{q}{2} + 1$.

Open question: is it true for $\mu_q^{\text{tri}}(n)$?

ASYMPTOTICS FOR TRISYMMETRIC DECOMPOSITIONS

We know:

- $\mu_q(m)$ is **linear** in *m*
- ▶ $\mu_q^{\text{sym}}(m)$ is **linear** in *m*

ASYMPTOTICS FOR TRISYMMETRIC DECOMPOSITIONS

We know:

- $\mu_q(m)$ is **linear** in *m*
- $\mu_q^{\text{sym}}(m)$ is **linear** in *m*
- **Question:**
 - ▶ is it true for $\mu_q^{\text{tri}}(m)$?

ASYMPTOTICS FOR TRISYMMETRIC DECOMPOSITIONS

We know:

- $\mu_q(m)$ is **linear** in *m*
- $\mu_q^{\text{sym}}(m)$ is **linear** in *m*
- **Question:**
 - ▶ is it true for $\mu_q^{\text{tri}}(m)$?
 - we have to study symmetry in higher dimension to answer!

• What happens with the product of *t* variable x_1, \ldots, x_t , for $t \ge 3$?

Classic decompositions $\prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j^{(1)}(x_1) \dots \varphi_j^{(t)}(x_t) \cdot \alpha_j \quad \left| \begin{array}{c} \mathbf{Symmetric} \text{ decompositions} \\ \prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j(x_1) \dots \varphi_j(x_t) \cdot \alpha_j \end{array} \right|$

• What happens with the product of *t* variable x_1, \ldots, x_t , for $t \ge 3$?

Classic decompositions $\prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j^{(1)}(x_1) \dots \varphi_j^{(t)}(x_t) \cdot \alpha_j \quad \left| \begin{array}{c} \mathbf{Symmetric} \text{ decompositions} \\ \prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j(x_1) \dots \varphi_j(x_t) \cdot \alpha_j \end{array} \right|$

• What happens with the product of *t* variable x_1, \ldots, x_t , for $t \ge 3$?

Classic decompositions $\prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j^{(1)}(x_1) \dots \varphi_j^{(t)}(x_t) \cdot \alpha_j \quad \left| \begin{array}{c} \textbf{Symmetric} \text{ decompositions} \\ \prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j(x_1) \dots \varphi_j(x_t) \cdot \alpha_j \end{array} \right|$

Theorem

Let $\mathcal{A} = \mathbb{F}_{q^m}$. If $t \leq q$, the symmetric multilinear complexity of the product of t variables is linear in m. If t > q, then there is no symmetric decomposition.

• What happens with the product of *t* variable x_1, \ldots, x_t , for $t \ge 3$?

Classic decompositions $\prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j^{(1)}(x_1) \dots \varphi_j^{(t)}(x_t) \cdot \alpha_j \quad \left| \begin{array}{c} \mathbf{Symmetric} \text{ decompositions} \\ \prod_{i=1}^{t} x_i = \sum_{j=1}^{r} \varphi_j(x_1) \dots \varphi_j(x_t) \cdot \alpha_j \end{array} \right|$

Theorem

Let $\mathcal{A} = \mathbb{F}_{q^m}$. If $t \leq q$, the symmetric multilinear complexity of the product of t variables is linear in m. If t > q, then there is no symmetric decomposition.

Proof.

Generalization of the Chudnovsky-Chudnovsky method: evaluation-interpolation on curves with many points.

BACK ON TRISYMMETRY

Corollary

Let $A = \mathbb{F}_{q^m}$ *and* $q \ge 3$ *. Then the trisymmetric complexity* $\mu_q^{tri}(m)$ *is linear in m.*

BACK ON TRISYMMETRY

Corollary

Let $A = \mathbb{F}_{q^m}$ *and* $q \ge 3$ *. Then the trisymmetric complexity* $\mu_q^{tri}(m)$ *is linear in m.*

Proof.

Taking the trace on a **symmetric** decomposition for the 3 variable product *xyz* gives a **trisymmetric** decompositon for the product *xy*. \Box

Bilinear complexity:

- important notion in computer algebra
- > any bilinear map can be studied, not just multiplication

Bilinear complexity:

- important notion in computer algebra
- > any bilinear map can be studied, not just multiplication

Symmetric complexity:

• Generalization to the case of *t*-variable products

Bilinear complexity:

- important notion in computer algebra
- > any bilinear map can be studied, not just multiplication

Symmetric complexity:

• Generalization to the case of *t*-variable products

Trisymmetric complexity:

- small values can be found through exhaustive search
- is **linear** in the extension degree

Bilinear complexity:

- important notion in computer algebra
- > any bilinear map can be studied, not just multiplication

Symmetric complexity:

• Generalization to the case of *t*-variable products

Trisymmetric complexity:

- small values can be found through exhaustive search
- ▶ is **linear** in the extension degree

Future work:

- distinguish μ_q^{tri} from μ_q^{sym} for $q \ge 3$
- find better bounds than those already known
CONCLUSION

Bilinear complexity:

- important notion in computer algebra
- > any bilinear map can be studied, not just multiplication

Symmetric complexity:

• Generalization to the case of *t*-variable products

Trisymmetric complexity:

- small values can be found through exhaustive search
- is **linear** in the extension degree

Future work:

- distinguish μ_q^{tri} from μ_q^{sym} for $q \ge 3$
- find better bounds than those already known

Thank you!