Trisymmetric multiplication formulas in finite fields

Hugues Randriambololona, Édouard Rousseau

October 22, 2020
Séminaire CRYPTO

Finite fields in CRyptography

Finite fields are (almost) everywhere in public key cryptography:

- discrete logarithm
- elliptic curves
- isogenies
- code-based cryptography
- multivariate cryptography

Finite fields in cryptography

Finite fields are (almost) everywhere in public key cryptography:

- discrete logarithm
- elliptic curves
- isogenies
- code-based cryptography
- multivariate cryptography
- used in 3 of the 4 main families of post-quantum protocols

Finite fields in cryptography

Finite fields are (almost) everywhere in public key cryptography:

- discrete logarithm
- elliptic curves
- isogenies
- code-based cryptography
- multivariate cryptography
- used in 3 of the 4 main families of post-quantum protocols
- bright future!

OTHER APPLICATIONS

Finite fields are also widely used in

- coding theory
- algebraic geometry
- number theory

OTHER APPLICATIONS

Finite fields are also widely used in

- coding theory
- algebraic geometry
- number theory
- motivates their study
- algorithmic study: a part of computer algebra

Finite field arithmetic

Notation: $\mathbb{F}_{q^{m}}$ denotes the finite field with q^{m} elements

$$
\mathbb{F}_{q^{m}} \cong \mathbb{F}_{q}[X] /(P(X))
$$

- $P \in \mathbb{F}_{q}[X]$ is an irreducible polynomial of degree m

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{m-1}}\right)$
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{m-1}\right)$

Finite field arithmetic

Notation: $\mathbb{F}_{q^{m}}$ denotes the finite field with q^{m} elements

$$
\mathbb{F}_{q^{m}} \cong \mathbb{F}_{q}[X] /(P(X))
$$

- $P \in \mathbb{F}_{q}[X]$ is an irreducible polynomial of degree m

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- fast, but only possible for small fields
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{m-1}}\right)$
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{m-1}\right)$

Finite field arithmetic

Notation: $\mathbb{F}_{q^{m}}$ denotes the finite field with q^{m} elements

$$
\mathbb{F}_{q^{m}} \cong \mathbb{F}_{q}[X] /(P(X))
$$

- $P \in \mathbb{F}_{q}[X]$ is an irreducible polynomial of degree m

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- fast, but only possible for small fields
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{m-1}}\right)$
- fast Frobenius evaluation but slow multiplication
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{m-1}\right)$

Finite field arithmetic

Notation: $\mathbb{F}_{q^{m}}$ denotes the finite field with q^{m} elements

$$
\mathbb{F}_{q^{m}} \cong \mathbb{F}_{q}[X] /(P(X))
$$

- $P \in \mathbb{F}_{q}[X]$ is an irreducible polynomial of degree m

Some possible representations:

- Zech's logarithm: elements are represented as generator powers
- fast, but only possible for small fields
- normal basis: $\left(\alpha, \alpha^{\sigma}, \ldots, \alpha^{\sigma^{m-1}}\right)$
- fast Frobenius evaluation but slow multiplication
- monomial basis: $\left(1, \bar{X}, \ldots, \bar{X}^{m-1}\right)$
- commonly used representation, easy to construct
- multiplication slower than addition

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive © ${ }^{-}$
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
- Karatsuba (1962)

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques
- Schönhage-Strassen (1971)

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive ©
- additions, scalar multiplications: cheap ©
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques
- Schönhage-Strassen (1971)
- ...

Motivations

- Computations in an algebra \mathcal{A} over \mathbb{F}_{q}
- typically $\mathbb{F}_{q^{m}}$ with the monomial basis
- multiplications: expensive © ${ }^{-}$
- additions, scalar multiplications: cheap ()
- we want to study/reduce the cost of multiplication
- Lot of litterature on the subject
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation techniques
- Schönhage-Strassen (1971)
- ...
- $O(m \log m)$ algorithm [Harvey, Van Der Hoeven '19]

BILINEAR COMPLEXITY: INTUITION

- \mathcal{A} an algebra over \mathbb{K}
- bilinear complexity: number of subproduct in \mathbb{K} needed to compute a product in \mathcal{A}
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+a_{1} b_{1} X^{2}
\end{gathered}
$$

BILINEAR COMPLEXITY: INTUITION

- \mathcal{A} an algebra over \mathbb{K}
- bilinear complexity: number of subproduct in \mathbb{K} needed to compute a product in \mathcal{A}
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+a_{1} b_{1} X^{2}
\end{gathered}
$$

BILINEAR COMPLEXITY: INTUITION

- \mathcal{A} an algebra over \mathbb{K}
- bilinear complexity: number of subproduct in \mathbb{K} needed to compute a product in \mathcal{A}
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
c_{0}+\left(c_{2}-c_{1}-c_{0}\right) X+c_{1} X^{2}
\end{gathered}
$$

with

$$
\left\{\begin{array}{l}
c_{0}=a_{0} b_{0} \\
c_{1}=a_{1} b_{1} \\
c_{2}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{array}\right.
$$

BILINEAR COMPLEXITY: INTUITION

- \mathcal{A} an algebra over \mathbb{K}
- bilinear complexity: number of subproduct in \mathbb{K} needed to compute a product in \mathcal{A}
Karatsuba:

$$
\begin{gathered}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)= \\
c_{0}+\left(c_{2}-c_{1}-c_{0}\right) X+c_{1} X^{2}
\end{gathered}
$$

with

$$
\left\{\begin{array}{l}
c_{0}=a_{0} b_{0} \\
c_{1}=a_{1} b_{1} \\
c_{2}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{array}\right.
$$

COMPLEXITY OF KARATSUBA'S ALGORITHM

COMPLEXITY OF KARATSUBA'S ALGORITHM

- Degree 2: 3 multiplications instead of 4

COMPLEXITY OF KARATSUBA'S ALGORITHM

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy

COMPLEXITY OF KARATSUBA's ALGORITHM

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's Algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's Algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's Algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's Algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's Algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

Complexity of Karatsuba's Algorithm

- Degree 2: 3 multiplications instead of 4
- Higher degrees: reccursive strategy
- Assymptotically: $O\left(n^{1.58}\right)$ instead of $O\left(n^{2}\right)$

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$
\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right)\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0,0} b_{0,0}+a_{0,1} b_{1,0} & a_{0,0} b_{0,1}+a_{0,1} b_{1,1} \\
a_{1,0} b_{0,0}+a_{1,1} b_{1,0} & a_{1,0} b_{0,1}+a_{1,1} b_{1,1}
\end{array}\right)
$$

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$
\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right)\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0,0} b_{0,0}+a_{0,1} b_{1,0} & a_{0,0} b_{0,1}+a_{0,1} b_{1,1} \\
a_{1,0} b_{0,0}+a_{1,1} b_{1,0} & a_{1,0} b_{0,1}+a_{1,1} b_{1,1}
\end{array}\right)
$$

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$
\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right)\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0,0} b_{0,0}+a_{0,1} b_{1,0} & a_{0,0} b_{0,1}+a_{0,1} b_{1,1} \\
a_{1,0} b_{0,0}+a_{1,1} b_{1,0} & a_{1,0} b_{0,1}+a_{1,1} b_{1,1}
\end{array}\right)
$$

- Strassen's algorithm: you only need 7 multiplications!

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$
\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right)\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0,0} b_{0,0}+a_{0,1} b_{1,0} & a_{0,0} b_{0,1}+a_{0,1} b_{1,1} \\
a_{1,0} b_{0,0}+a_{1,1} b_{1,0} & a_{1,0} b_{0,1}+a_{1,1} b_{1,1}
\end{array}\right)
$$

- Strassen's algorithm: you only need 7 multiplications!
- that is optimal

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$
\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right)\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0,0} b_{0,0}+a_{0,1} b_{1,0} & a_{0,0} b_{0,1}+a_{0,1} b_{1,1} \\
a_{1,0} b_{0,0}+a_{1,1} b_{1,0} & a_{1,0} b_{0,1}+a_{1,1} b_{1,1}
\end{array}\right)
$$

- Strassen's algorithm: you only need 7 multiplications!
- that is optimal
- the bilinear complexity of the 2×2 matrix multiplication is 7

BILINEAR COMPLEXITY: INTUITION

2×2 matrix multiplication:

$$
\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right)\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0,0} b_{0,0}+a_{0,1} b_{1,0} & a_{0,0} b_{0,1}+a_{0,1} b_{1,1} \\
a_{1,0} b_{0,0}+a_{1,1} b_{1,0} & a_{1,0} b_{0,1}+a_{1,1} b_{1,1}
\end{array}\right)
$$

- Strassen's algorithm: you only need 7 multiplications!
- that is optimal
- the bilinear complexity of the 2×2 matrix multiplication is 7

Open question: what is the bilinear complexity of the 3×3 matrix multiplication?

BiLINEAR COMPLEXITY: DEFINITION

Definition
The bilinear complexity of the product in \mathcal{A} is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathcal{A}$

$$
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}
$$

with φ_{j}, ψ_{j} linear forms and α_{j} elements of \mathcal{A}.

BILINEAR COMPLEXITY: DEFINITION

Definition
The bilinear complexity of the product in \mathcal{A} is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathcal{A}$

$$
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}
$$

with φ_{j}, ψ_{j} linear forms and α_{j} elements of \mathcal{A}.

- $\varphi_{j}(x)=a_{1, j} x_{1}+\cdots+a_{n, j} x_{n}$
- $\psi_{j}(y)=b_{1, j} y_{1}+\cdots+b_{n, j} y_{n}$
- linear combinations of the coordinates x_{i} and y_{i}

BILINEAR COMPLEXITY: DEFINITION

Definition
The bilinear complexity of the product in \mathcal{A} is the minimal integer $r \in \mathbb{N}$ such that you can write, for all $x, y \in \mathcal{A}$

$$
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}
$$

with φ_{j}, ψ_{j} linear forms and α_{j} elements of \mathcal{A}.

- $\varphi_{j}(x)=a_{1, j} x_{1}+\cdots+a_{n, j} x_{n}$
- $\psi_{j}(y)=b_{1, j} y_{1}+\cdots+b_{n, j} y_{n}$
- linear combinations of the coordinates x_{i} and y_{i}

Notations and Questions

- $\mathbb{K}=\mathbb{F}_{q}$
- $\mu_{q}(m)=$ bilinear complexity of the product in $\mathcal{A}=\mathbb{F}_{q^{m}}$

Two independent questions:

- What is the asymptotic comportment of $\mu_{q}(m)$?
- Can we find values $\mu_{q}(m)$ for small m ?

Asymptotics

Lower bound from coding theory

- $2 m-1 \leq \mu_{q}(m)$

ASYMPTOTICS

Lower bound from coding theory

- $2 m-1 \leq \mu_{q}(m)$

Upper bounds, from evaluation-interpolation schemes

- [Chudnovsky-Chudnovsky '87]
- [Shparlinski-Tsfasman-Vladut '92]
- [Ballet '08]
- [Randriambololona '12]
- ...

Asymptotics

Lower bound from coding theory

- $2 m-1 \leq \mu_{q}(m)$

Upper bounds, from evaluation-interpolation schemes

- [Chudnovsky-Chudnovsky '87]
- [Shparlinski-Tsfasman-Vladut '92]
- [Ballet '08]
- [Randriambololona '12]
- ...
- $\mu_{q}(m)$ is linear in m

Evaluation-Interpolation schemes

Karatsuba again:

- $P(X)=a_{0}+a_{1} X, Q(X)=b_{0}+b_{1} X$

Evaluation-Interpolation schemes

Karatsuba again:

- $P(X)=a_{0}+a_{1} X, Q(X)=b_{0}+b_{1} X$

Big news! Karatsuba is an evaluation-interpolation scheme!

Evaluation-Interpolation schemes

Karatsuba again:

- $P(X)=a_{0}+a_{1} X, Q(X)=b_{0}+b_{1} X$

Big news! Karatsuba is an evaluation-interpolation scheme!

- $c_{0}=P(0) Q(0)=P Q(0)=a_{0} b_{0}$

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:

- $P(X)=a_{0}+a_{1} X, Q(X)=b_{0}+b_{1} X$

Big news! Karatsuba is an evaluation-interpolation scheme!

- $c_{0}=P(0) Q(0)=P Q(0)=a_{0} b_{0}$
- $c_{1}=P(1) Q(1)=P Q(1)=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)$

Evaluation-Interpolation schemes

Karatsuba again:

- $P(X)=a_{0}+a_{1} X, Q(X)=b_{0}+b_{1} X$

Big news! Karatsuba is an evaluation-interpolation scheme!

$$
\begin{aligned}
& c_{0}=P(0) Q(0)=P Q(0)=a_{0} b_{0} \\
& c_{1}=P(1) Q(1)=P Q(1)=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right) \\
& c_{2}=c_{\infty}=P(\infty) Q(\infty)=P Q(\infty)=a_{1} b_{1}
\end{aligned}
$$

with $R(\infty)=$ leading coefficient of R

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:

- $P(X)=a_{0}+a_{1} X, Q(X)=b_{0}+b_{1} X$

Big news! Karatsuba is an evaluation-interpolation scheme! (on the projective line \mathbb{P}^{1})

$$
\begin{aligned}
& c_{0}=P(0) Q(0)=P Q(0)=a_{0} b_{0} \\
& c_{1}=P(1) Q(1)=P Q(1)=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right) \\
& c_{2}=c_{\infty}=P(\infty) Q(\infty)=P Q(\infty)=a_{1} b_{1}
\end{aligned}
$$

with $R(\infty)=$ leading coefficient of R

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:

- $P(X)=a_{0}+a_{1} X, Q(X)=b_{0}+b_{1} X$

Big news! Karatsuba is an evaluation-interpolation scheme! (on the projective line \mathbb{P}^{1})

- $c_{0}=P(0) Q(0)=P Q(0)=a_{0} b_{0}$
- $c_{1}=P(1) Q(1)=P Q(1)=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)$
- $c_{2}=c_{\infty}=P(\infty) Q(\infty)=P Q(\infty)=a_{1} b_{1}$
with $R(\infty)=$ leading coefficient of R
- When studying $\mathcal{A}=\mathbb{F}_{q^{m}}$ for $m \rightarrow \infty$, one needs many points of evaluation
\leadsto use a curve on \mathbb{F}_{q} with many points of evaluation

How to find small values?

Possibilities:

- tighten the theoretical bounds (hard ${ }^{(\cdot)}$)
- find all formulas
- clever algorithms for exhaustive search
- [BDEZ '12]
- [Covanov '18]

SYMMETRIC DECOMPOSITIONS

- \mathcal{A} commutative algebra

Classic decompositions $x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}$

Symmetric decompositions
$y x=x y=\sum_{j=1}^{r} \varphi_{j}(x) \varphi_{j}(y) \cdot \alpha_{j}$

SYMMETRIC DECOMPOSITIONS

- \mathcal{A} commutative algebra

Classic decompositions $x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}$

Symmetric decompositions
$y x=x y=\sum_{j=1}^{r} \varphi_{j}(x) \varphi_{j}(y) \cdot \alpha_{j}$

SYMMETRIC DECOMPOSITIONS

- \mathcal{A} commutative algebra

$$
\begin{array}{c|c}
\text { Classic decompositions } & \begin{array}{c}
\text { Symmetric decompositions } \\
x y=\sum_{j=1}^{r} \varphi_{j}(x) \psi_{j}(y) \cdot \alpha_{j}
\end{array} \\
y x=x y=\sum_{j=1}^{r} \varphi_{j}(x) \varphi_{j}(y) \cdot \alpha_{j}
\end{array}
$$

Notation: for $\mathcal{A}=\mathbb{F}_{q^{m}}$, we note $\mu_{q}^{\text {sym }}(m)$ the minimal length r in a symmetric decomposition

AbOUT SYMMETRIC DECOMPOSITIONS

Two questions:

About symmetric Decompositions

Two questions:

- Assymptotics:

$$
\mu_{q}(m) \leq \mu_{q}^{\mathrm{sym}}(m)
$$

About symmetric Decompositions

Two questions:

- Assymptotics:

$$
\mu_{q}(m) \leq \mu_{q}^{\text {sym }}(m)
$$

- $\mu_{q}^{\text {sym }}(m)$ still linear in m

AbOUT SYMMETRIC DECOMPOSITIONS

Two questions:

- Assymptotics:

$$
\mu_{q}(m) \leq \mu_{q}^{\operatorname{sym}}(m)
$$

- $\mu_{q}^{\text {sym }}(m)$ still linear in m

Open question: find q and m with

$$
\mu_{q}(m) \neq \mu_{q}^{\mathrm{sym}}(m)
$$

AbOUT SYMMETRIC DECOMPOSITIONS

Two questions:

- Assymptotics:

$$
\mu_{q}(m) \leq \mu_{q}^{\operatorname{sym}}(m)
$$

- $\mu_{q}^{\text {sym }}(m)$ still linear in m

$$
\mu_{q}(m) \neq \mu_{q}^{\mathrm{sym}}(m)
$$

- Small values:

AbOUT SYMMETRIC DECOMPOSITIONS

Two questions:

- Assymptotics:

$$
\mu_{q}(m) \leq \mu_{q}^{\text {sym }}(m)
$$

- $\mu_{q}^{\text {sym }}(m)$ still linear in m

$$
\mu_{q}(m) \neq \mu_{q}^{\mathrm{sym}}(m)
$$

- Small values:
- Smaller search space \sim faster exhaustive search

Even more symmetric Decompositions

- $\mathcal{A}=\mathbb{F}_{q^{m}}$
- every linear form φ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^{m}}$, with Tr the trace of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$
- we can rewrite the formula

$$
x y=\sum_{j=1}^{r} \varphi_{j}(x) \varphi_{j}(y) \cdot \beta_{j}
$$

Even more symmetric Decompositions

$-\mathcal{A}=\mathbb{F}_{q^{m}}$

- every linear form φ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^{m}}$, with Tr the trace of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$
- we can rewrite the formula

$$
x y=\sum_{j=1}^{r} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \beta_{j}
$$

Even more symmetric decompositions

- $\mathcal{A}=\mathbb{F}_{q^{m}}$
- every linear form φ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^{m}}$, with Tr the trace of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$
- we can rewrite the formula, and even ask $\beta_{j}=\lambda_{j} \alpha_{j}$

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \alpha_{j}
$$

with $\lambda_{j} \in \mathbb{F}_{q}$ scalars

Even more symmetric decompositions

- $\mathcal{A}=\mathbb{F}_{q^{m}}$
- every linear form φ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^{m}}$, with Tr the trace of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$
- we can rewrite the formula, and even ask $\beta_{j}=\lambda_{j} \alpha_{j}$

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \alpha_{j}
$$

with $\lambda_{j} \in \mathbb{F}_{q}$ scalars

- we call these formulas trisymmetric decompositions

EVEN MORE SYMMETRIC DECOMPOSITIONS

- $\mathcal{A}=\mathbb{F}_{q^{m}}$
- every linear form φ can be written $x \mapsto \operatorname{Tr}(\alpha x)$ for some $\alpha \in \mathbb{F}_{q^{m}}$, with Tr the trace of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$
- we can rewrite the formula, and even ask $\beta_{j}=\lambda_{j} \alpha_{j}$

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \alpha_{j}
$$

with $\lambda_{j} \in \mathbb{F}_{q}$ scalars

- we call these formulas trisymmetric decompositions
- we note $\mu_{q}^{\operatorname{tri}}(m)$ the minimal r in such formulas

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

- $\mathcal{A}=\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$
- $x, y \in \mathcal{A}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

$-\mathcal{A}=\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$

- $x, y \in \mathcal{A}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$

$$
\left(x_{0}+x_{1} \zeta\right)\left(y_{0}+y_{1} \zeta\right)=\left(x_{0} y_{0}+x_{1} y_{1}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) \zeta
$$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

- $\mathcal{A}=\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$
- $x, y \in \mathcal{A}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$

$$
\left(x_{0}+x_{1} \zeta\right)\left(y_{0}+y_{1} \zeta\right)=\left(x_{0} y_{0}+x_{1} y_{1}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) \zeta
$$

$$
\begin{aligned}
x y= & -\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1-\operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\
& +\operatorname{Tr}((\zeta-1) \times x) \operatorname{Tr}((\zeta-1) \times y) \cdot(\zeta-1)
\end{aligned}
$$

EXAMPLE OF TRISYMMETRIC DECOMPOSITION

- $\mathcal{A}=\mathbb{F}_{3^{2}} \cong \mathbb{F}_{3}[z] /\left(z^{2}-z-1\right) \cong \mathbb{F}_{3}(\zeta)$
- $x, y \in \mathcal{A}, x=x_{0}+x_{1} \zeta$ and $y=y_{0}+y_{1} \zeta$

$$
\begin{aligned}
&\left(x_{0}+x_{1} \zeta\right)\left(y_{0}+y_{1} \zeta\right)=\left(x_{0} y_{0}+x_{1} y_{1}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) \zeta \\
& x y=-\operatorname{Tr}(1 \times x) \operatorname{Tr}(1 \times y) \cdot 1-\operatorname{Tr}(\zeta \times x) \operatorname{Tr}(\zeta \times y) \cdot \zeta \\
&+\operatorname{Tr}((\zeta-1) \times x) \operatorname{Tr}((\zeta-1) \times y) \cdot(\zeta-1)
\end{aligned}
$$

with

$$
\begin{cases}\operatorname{Tr}(x) \operatorname{Tr}(y) & =\left(x_{0}-x_{1}\right)\left(y_{0}-y_{1}\right) \\ \operatorname{Tr}((\zeta-1) x) \operatorname{Tr}((\zeta-1) y) & =\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right) \\ \operatorname{Tr}(\zeta x) \operatorname{Tr}(\zeta y) & =x_{0} y_{0}\end{cases}
$$

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{q}(m) \leq \mu_{q}^{\mathrm{sym}}(m) \leq \mu_{q}^{\mathrm{tri}}(m)
$$

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{q}(m) \underset{?}{\leq} \mu_{q}^{\mathrm{sym}}(m) \underset{?}{\leq} \mu_{q}^{\operatorname{tri}}(m)
$$

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{q}(m) \underset{?}{\leq} \mu_{q}^{\mathrm{sym}}(m) \underset{?}{\leq} \mu_{q}^{\operatorname{tri}}(m)
$$

Proposition (Randriambololona, '14)
Tri-symmetric decompositions always exist, except for $q=2, m \geq 3$.

AbOUT TRISYMMETRIC DECOMPOSITIONS

Link with other decompositions:

$$
\mu_{q}(m) \underset{?}{\leq} \mu_{q}^{\mathrm{sym}}(m) \underset{?}{\leq} \mu_{q}^{\mathrm{tri}}(m)
$$

Proposition (Randriambololona, '14)
Tri-symmetric decompositions always exist, except for $q=2, m \geq 3$.
(e)

Open question: find $q \geq 3$ and $m \geq 2$ with

$$
\mu_{q}^{\mathrm{sym}}(m) \neq \mu_{q}^{\operatorname{tri}}(m)
$$

Finding DECOMPOSITIONS

Symmetric decompositions:

$$
x y=\sum_{j=1}^{r} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \beta_{j}
$$

- [BDEZ '12]
- [Covanov '18])

Finding DECOMPOSITIONS

Symmetric decompositions:

$$
x y=\sum_{j=1}^{r} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \beta_{j}
$$

- [BDEZ '12]
- [Covanov '18])
- rely on the fact that the α_{j} and β_{j} are independent

Finding DECOMPOSITIONS

Symmetric decompositions:

$$
x y=\sum_{j=1}^{r} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \beta_{j}
$$

- [BDEZ '12]
- [Covanov '18])
- rely on the fact that the α_{j} and β_{j} are independent
- no longer the case for trisymmetric decompositions

Finding DECOMPOSITIONS

Symmetric decompositions:

$$
x y=\sum_{j=1}^{r} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \beta_{j}
$$

- [BDEZ '12]
- [Covanov '18])
- rely on the fact that the α_{j} and β_{j} are independent
- no longer the case for trisymmetric decompositions

Trisymmetric decompositions:

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \alpha_{j}
$$

- ad hoc algorithm

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

- find (exhaustive search) elements in $\mathbb{F}_{q^{m}}$ of the form $(1, *, \ldots, *)$ such that

$$
b_{1}(x, y)=\sum_{j=1}^{r_{1}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right)
$$

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

- find (exhaustive search) elements in $\mathbb{F}_{q^{m}}$ of the form $(1, *, \ldots, *)$ such that

$$
b_{1}(x, y)=\sum_{j=1}^{r_{1}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right)
$$

$$
x y-\sum_{j=1}^{r_{1}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \alpha_{j}=\left(0, b_{2}^{\prime}(x, y), \ldots, b_{m}^{\prime}(x, y)\right)
$$

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

- find elements in $\mathbb{F}_{q^{m}}$ of the form $(0,1, *, \ldots, *)$ such that

$$
b_{2}^{\prime}(x, y)=\sum_{j=r_{1}+1}^{r_{2}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right)
$$

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

- find elements in $\mathbb{F}_{q^{m}}$ of the form $(0,1, *, \ldots, *)$ such that

$$
\begin{gathered}
b_{2}^{\prime}(x, y)=\sum_{j=r_{1}+1}^{r_{2}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \\
x y-\sum_{j=1}^{r_{2}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \alpha_{j}=\left(0,0, b_{3}^{\prime \prime}(x, y) \ldots, b_{m}^{\prime \prime}(x, y)\right)
\end{gathered}
$$

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

- find elements in $\mathbb{F}_{q^{m}}$ of the form $(0,0,1, *, \ldots, *)$ such that

$$
b_{3}^{\prime \prime}(x, y)=\sum_{j=r_{2}+1}^{r_{3}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right)
$$

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

- find elements in $\mathbb{F}_{q^{m}}$ of the form $(0,0,1, *, \ldots, *)$ such that

$$
b_{3}^{\prime \prime}(x, y)=\sum_{j=r_{2}+1}^{r_{3}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right)
$$

- and so on

COMPUTING TRISYMMETRIC DECOMPOSITIONS

- choose a basis of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$

$$
x y=\left(b_{1}(x, y), \ldots, b_{m}(x, y)\right)
$$

with b_{j} bilinear forms

- find elements in $\mathbb{F}_{q^{m}}$ of the form $(0,0,1, *, \ldots, *)$ such that

$$
b_{3}^{\prime \prime}(x, y)=\sum_{j=r_{2}+1}^{r_{3}} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right)
$$

- and so on
- in the end, we obtain

$$
x y=\sum_{j=1}^{r} \lambda_{j} \operatorname{Tr}\left(\alpha_{j} x\right) \operatorname{Tr}\left(\alpha_{j} y\right) \cdot \alpha_{j}
$$

SOME RESULTS FOR $q=3$

field	μ_{q}	$\mu_{q}^{\text {sym }}$	$\mu_{q}^{\text {tri }}$
$\mathbb{F}_{3^{2}}$	3	3	3
$\mathbb{F}_{3^{3}}$	6	6	6
$\mathbb{F}_{3^{4}}$	9	9	9
$\mathbb{F}_{3^{5}}$	$9 \leq \star \leq 11$	11	11
$\mathbb{F}_{3^{6}}$	$11 \leq \star \leq 15$	$13 \leq \star \leq 15$	$13 \leq \star \leq 15$

SOME RESULTS FOR $q=3$

field	μ_{q}	$\mu_{q}^{\text {sym }}$	$\mu_{q}^{\text {tri }}$
$\mathbb{F}_{3^{2}}$	3	3	3
$\mathbb{F}_{3^{3}}$	6	6	6
$\mathbb{F}_{3^{3}}$	9	9	9
$\mathbb{F}_{3^{5}}$	$9 \leq \star \leq 11$	11	11
$\mathbb{F}_{3^{6}}$	$11 \leq \star \leq 15$	$13 \leq \star \leq 15$	$13 \leq \star \leq 15$

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition
For any odd q, we have $\mu_{q}(2)=\mu_{q}^{t r i}(2)=3$.

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd q, we have $\mu_{q}(2)=\mu_{q}^{t r i}(2)=3$.
Experimental results:

- $\mu_{3}^{\mathrm{tri}}(3)=6$
- $\mu_{p}^{\text {tri }}(3)=5$ for all primes $5 \leq p \leq 257$

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd q, we have $\mu_{q}(2)=\mu_{q}^{t r i}(2)=3$.
Experimental results:

- $\mu_{3}^{\operatorname{tri}}(3)=6$
- $\mu_{p}^{\text {tri }}(3)=5$ for all primes $5 \leq p \leq 257$
- $\mu_{3}^{\mathrm{tri}}(4)=9, \mu_{5}^{\mathrm{tri}}(4)=8$
- $\mu_{p}^{\text {tri }}(4)=7$ for all primes $7 \leq p \leq 23$

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd q, we have $\mu_{q}(2)=\mu_{q}^{\text {tri }}(2)=3$.
Experimental results:

- $\mu_{3}^{\mathrm{tri}}(3)=6$
- $\mu_{p}^{\text {tri }}(3)=5$ for all primes $5 \leq p \leq 257$
- $\mu_{3}^{\text {tri }}(4)=9, \mu_{5}^{\text {tri }}(4)=8$
- $\mu_{p}^{\text {tri }}(4)=7$ for all primes $7 \leq p \leq 23$

Proposition
We have $\mu_{q}(n) \geq 2 n-1$ with equality if and only if $n<\frac{q}{2}+1$.

EXPERIMENTAL RESULTS AND CONJECTURES

Proposition

For any odd q, we have $\mu_{q}(2)=\mu_{q}^{\text {tri }}(2)=3$.
Experimental results:

- $\mu_{3}^{\operatorname{tri}}(3)=6$
- $\mu_{p}^{\text {tri }}(3)=5$ for all primes $5 \leq p \leq 257$
- $\mu_{3}^{\operatorname{tri}}(4)=9, \mu_{5}^{\operatorname{tri}}(4)=8$
- $\mu_{p}^{\text {tri }}(4)=7$ for all primes $7 \leq p \leq 23$

Proposition
We have $\mu_{q}(n) \geq 2 n-1$ with equality if and only if $n<\frac{q}{2}+1$.
Open question: is it true for $\mu_{q}^{\text {tri }}(n)$?

Asymptotics FOR TRISYMMETRIC DECOMPOSITIONS

We know:

- $\mu_{q}(m)$ is linear in m
- $\mu_{q}^{\text {sym }}(m)$ is linear in m

Asymptotics For trisymmetric Decompositions

We know:

- $\mu_{q}(m)$ is linear in m
- $\mu_{q}^{\text {sym }}(m)$ is linear in m

Question:

- is it true for $\mu_{q}^{\mathrm{tri}}(m)$?

AsYMPTOTICS FOR TRISYMMETRIC DECOMPOSITIONS

We know:

- $\mu_{q}(m)$ is linear in m
- $\mu_{q}^{\text {sym }}(m)$ is linear in m

Question:

- is it true for $\mu_{q}^{\mathrm{tri}}(m)$?
- we have to study symmetry in higher dimension to answer!

SYMMETRY IN HIGHER DIMENSIONS

- What happens with the product of t variable x_{1}, \ldots, x_{t}, for $t \geq 3$?

Classic decompositions
$\prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}^{(1)}\left(x_{1}\right) \ldots \varphi_{j}^{(t)}\left(x_{t}\right) \cdot \alpha_{j}$

Symmetric decompositions
$\prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}\left(x_{1}\right) \ldots \varphi_{j}\left(x_{t}\right) \cdot \alpha_{j}$

SYMMETRY IN HIGHER DIMENSIONS

- What happens with the product of t variable x_{1}, \ldots, x_{t}, for $t \geq 3$?

Classic decompositions
$\prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}^{(1)}\left(x_{1}\right) \ldots \varphi_{j}^{(t)}\left(x_{t}\right) \cdot \alpha_{j}$

Symmetric decompositions
$\prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}\left(x_{1}\right) \ldots \varphi_{j}\left(x_{t}\right) \cdot \alpha_{j}$

SYMMETRY IN HIGHER DIMENSIONS

- What happens with the product of t variable x_{1}, \ldots, x_{t}, for $t \geq 3$?

Classic decompositions

$$
\prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}^{(1)}\left(x_{1}\right) \ldots \varphi_{j}^{(t)}\left(x_{t}\right) \cdot \alpha_{j} \mid \prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}\left(x_{1}\right) \ldots \varphi_{j}\left(x_{t}\right) \cdot \alpha_{j}
$$

Theorem
Let $\mathcal{A}=\mathbb{F}_{q^{m}}$. If $t \leq q$, the symmetric multilinear complexity of the product of t variables is linear in m. If $t>q$, then there is no symmetric decomposition.

SYMMETRY IN HIGHER DIMENSIONS

- What happens with the product of t variable x_{1}, \ldots, x_{t}, for $t \geq 3$?

Classic decompositions
$\prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}^{(1)}\left(x_{1}\right) \ldots \varphi_{j}^{(t)}\left(x_{t}\right) \cdot \alpha_{j}$

Symmetric decompositions $\prod_{i=1}^{t} x_{i}=\sum_{j=1}^{r} \varphi_{j}\left(x_{1}\right) \ldots \varphi_{j}\left(x_{t}\right) \cdot \alpha_{j}$

Theorem
Let $\mathcal{A}=\mathbb{F}_{q^{m}}$. If $t \leq q$, the symmetric multilinear complexity of the product of t variables is linear in m. If $t>q$, then there is no symmetric decomposition.

Proof.

Generalization of the Chudnovsky-Chudnovsky method: evaluation-interpolation on curves with many points.

BACK ON TRISYMMETRY

Corollary
Let $\mathcal{A}=\mathbb{F}_{q^{m}}$ and $q \geq 3$. Then the trisymmetric complexity $\mu_{q}^{t r i}(m)$ is linear in m.

BACK ON TRISYMMETRY

Corollary
Let $\mathcal{A}=\mathbb{F}_{q^{m}}$ and $q \geq 3$. Then the trisymmetric complexity $\mu_{q}^{\text {tri }}(m)$ is linear in m.

Proof.
Taking the trace on a symmetric decomposition for the 3
variable product $x y z$ gives a trisymmetric decompositon for the product $x y$.

CONCLUSION

Bilinear complexity:

- important notion in computer algebra
- any bilinear map can be studied, not just multiplication

CONCLUSION

Bilinear complexity:

- important notion in computer algebra
- any bilinear map can be studied, not just multiplication Symmetric complexity:
- Generalization to the case of t-variable products

CONCLUSION

Bilinear complexity:

- important notion in computer algebra
- any bilinear map can be studied, not just multiplication Symmetric complexity:
- Generalization to the case of t-variable products Trisymmetric complexity:
- small values can be found through exhaustive search
- is linear in the extension degree

CONCLUSION

Bilinear complexity:

- important notion in computer algebra
- any bilinear map can be studied, not just multiplication Symmetric complexity:
- Generalization to the case of t-variable products

Trisymmetric complexity:

- small values can be found through exhaustive search
- is linear in the extension degree

Future work:

- distinguish $\mu_{q}^{\text {tri }}$ from $\mu_{q}^{\text {sym }}$ for $q \geq 3$
- find better bounds than those already known

CONCLUSION

Bilinear complexity:

- important notion in computer algebra
- any bilinear map can be studied, not just multiplication Symmetric complexity:
- Generalization to the case of t-variable products

Trisymmetric complexity:

- small values can be found through exhaustive search
- is linear in the extension degree

Future work:

- distinguish $\mu_{q}^{\text {tri }}$ from $\mu_{q}^{\text {sym }}$ for $q \geq 3$
- find better bounds than those already known

Thank you!

