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Finite fields are (almost) everywhere in public key
cryptography:
» discrete logarithm
elliptic curves
isogenies
code-based cryptography

multivariate cryptography
used in 3 of the 4 main families of post-quantum protocols
» bright future!
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OTHER APPLICATIONS

Finite fields are also widely used in
» coding theory
» algebraic geometry
» number theory
>

motivates their study
» algorithmic study: a part of computer algebra
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FINITE FIELD ARITHMETIC
Notation: [F;» denotes the finite field with 4" elements

Fon = Fy[X]/(P(X))

» P ¢ Fy[X] is an irreducible polynomial of degree m
Some possible representations:

» Zech’s logarithm: elements are represented as generator
powers

. m—1
» normal basis: (o, a%,...,a% )

» monomial basis: (1,X,..., X" 1)
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FINITE FIELD ARITHMETIC
Notation: [F;» denotes the finite field with 4" elements

Fon = Fy[X]/(P(X))

» P ¢ Fy[X] is an irreducible polynomial of degree m

Some possible representations:

» Zech’s logarithm: elements are represented as generator
powers

» fast, but only possible for small fields

. m—1
» normal basis: (o, a%,...,a7 )
» fast Frobenius evaluation but slow multiplication
» monomial basis: (1,X,..., X" 1)

» commonly used representation, easy to construct
» multiplication slower than addition



Background and motivations Bilinear complexity Symmetries
000@ 00000000 0000000000000
| |

MOTIVATIONS

» Computations in an algebra A over [,
> typically F;» with the monomial basis
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MOTIVATIONS

» Computations in an algebra A over [,

> typically F;» with the monomial basis
» multiplications: expensive ®
» additions, scalar multiplications: cheap ©

> we want to study/reduce the cost of multiplication

» Lot of litterature on the subject

» Karatsuba (1962)

» Toom-Cook (1963), evaluation-interpolation techniques
» Schonhage-Strassen (1971)
>
>

O(mlogm) algorithm [Harvey, Van Der Hoeven "19]
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BILINEAR COMPLEXITY: INTUITION

> A an algebra over K

» bilinear complexity: number of subproduct in K needed
to compute a product in A

Karatsuba:
(a0 +a1X)(bo + 01 X) =

aghg + (a0b1 + albo)X + ﬂ1b1X2
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BILINEAR COMPLEXITY: INTUITION

2 x 2 matrix multiplication:

a0 a0\ (boo boa) _ (a00boo+aoabio ao0bo + ao1b1a
mpo ai1) \bip b a1,0boo +a11b1p aiobo1 +ai1b11

» Strassen’s algorithm: you only need 7 multiplications!

> that is optimal
» the bilinear complexity of the 2 x 2 matrix
multiplication is 7

@WOpen question: what is the bilinear complexity of the
3 x 3 matrix multiplication?
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Definition
The bilinear complexity of the product in A is the minimal
integer r € N such that you can write, for all x,y € A

xy =Y ei()y) - o
j=1

with ¢;, 1 linear forms and «; elements of A.
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NOTATIONS AND QUESTIONS

> K=T,

» jiy(m) = bilinear complexity of the product in A = Fn
Two independent questions:

» What is the asymptotic comportment of 1,(m)?

» Can we find values p,(m) for small m?
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ASYMPTOTICS

Lower bound from coding theory
> 2m — 1 < py(m)
Upper bounds, from evaluation-interpolation schemes
» [Chudnovsky-Chudnovsky "87]
[Shparlinski-Tsfasman-Vladut '92]
[Ballet "'08]

>
>
» [Randriambololona "12]
>
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ASYMPTOTICS

Lower bound from coding theory
> 2m — 1 < py(m)
Upper bounds, from evaluation-interpolation schemes
» [Chudnovsky-Chudnovsky "87]
» [Shparlinski-Tsfasman-Vladut "92]
> [Ballet '08]
» [Randriambololona "12]
>
| 4

pg(m) is linear in m

11/26
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Big news! Karatsuba is an evaluation-interpolation scheme!

> ¢y = P(0)Q(0) = PQ(0) = aghy
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> c1 = P(1)Q(1) = PQ(1) = (a0 + a1)(bo + b1)

> (2 = Coo = P(00)Q(00) = PQ(00) = a1l
with R(c0) = leading coefficient of R

12 /26



Background and motivations Bilinear complexity Symmetries
0000 00000080 0000000000000
| |

EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:

> P(X)=ap+mX,Q(X) =by+ X
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(on the projective line P')

> co = P(0)Q(0) = PQ(0) = aoho
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EVALUATION-INTERPOLATION SCHEMES

Karatsuba again:
> P(X)=ap+mX,Q(X) =by+ X
Big news! Karatsuba is an evaluation-interpolation scheme!
(on the projective line P!)
> co = P(0)Q(0) = PQ(0) = aobo
> o =P(1)Q(1) = PQ(1) = (ap +a1)(bo + b1)
> 2 = Coo = P(00)Q(00) = PQ(c0) = a1b;
with R(c0) = leading coefficient of R

» When studying A = Fyn for m — oo, one needs many
points of evaluation

~ use a curve on I, with many points of evaluation
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HOW TO FIND SMALL VALUES?

Possibilities:
> tighten the theoretical bounds (hard ®)

» find all formulas

> clever algorithms for exhaustive search
> [BDEZ ’'12]
» [Covanov "18]
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SYMMETRIC DECOMPOSITIONS

» A commutative algebra

Classic decompositions | Symmetric decompositions

xy =3 9(0YWY) oy | yx =xy =31 0i(0)9Y) - oy

Notation: for A = Fyn, we note ;" () the minimal length r in
a symmetric decomposition

14 /26
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ABOUT SYMMETRIC DECOMPOSITIONS

Two questions:
» Assymptotics:

Mq(m) < g (m)

> M;ym(m) still linear in m

@?Open question: find g and m with

Hq (m) # M;ym(m)

» Small values:
» Smaller search space ~ faster exhaustive search

15/ 26
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a € Fyn, with Tr the trace of Fyn /IF,

> we can rewrite the formula, and even ask §; = \;q;

;
xy = Z Aj Tr(ayx) Tr(ajy) - o
j=1
with ); € F, scalars
> we call these formulas trisymmetric decompositions

> we note u;‘iri(m) the minimal 7 in such formulas
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EXAMPLE OF TRISYMMETRIC DECOMPOSITION

> A=Fyp =Fslz]/(22—z—1) = F3(C)
> x,ye A x=x+xi¢andy = yo +y1¢

(x0 + x1¢) (Yo + y1¢) = (xoyo + x1y1) + (Xoy1 + X120 + x1y1)€

xy = —Tr(Ixx)Tr(lxy)-1—Tr(¢ xx)Tr(¢ xy)- ¢
+T1"((k*1)><x)T1"((<*1) y)- (1)
with
Tr(x) Tr(y) = (%o —x1)(¥o —y1)
Tr((¢ = )x) Tr((C = 1)y) = (x0+x1)(Yo + 1)
Tr(¢x) Tr(Cy) = XoYo
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Proposition (Randriambololona, "14)

Tri-symmetric decompositions always exist, except for g = 2,m > 3.

@?Open question: find g > 3 and m > 2 with
gy (m) # i (m)
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Symmetric decompositions:

Xy = Z Tr(ajx) Tr(ajy) - B;
=1

» [BDEZ '12]
» [Covanov "18])

> rely on the fact that the a; and f3; are independent
» no longer the case for trisymmetric decompositions

Trisymmetric decompositions:

’
XYy = Z /\] Tr(a]-x) TI"(Ozjy) . Oé]'
j=1

» ad hoc algorithm
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COMPUTING TRISYMMETRIC DECOMPOSITIONS
» choose a basis of Fyn /I,
xy = (b1(x, ), bm(x,y))

with b; bilinear forms
» find elements in [Fyn of the form (0,0, 1, *,..., ) such that

by (x,y) = Z Aj Tr( a] )Tr(a]y)

j=r+1

» and so on
» in the end, we obtain

Xy = Z A Tr(ajx) Tr(ajy) - o
j=1
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ASYMPTOTICS FOR TRISYMMETRIC DECOMPOSITIONS

We know:

» jig(m) is linear in m

> u,siym(m) is linear in m
Question:

> is it true for ,uffi(m)?

»> we have to study symmetry in higher dimension to
answer!
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» What happens with the product of t variable x1, ..., x, for
t>3?

Classic decompositions Symmetric decompositions
1 t
Moxi=Y e ) o) o | [T = S ¢i(x) - () - o

Theorem

Let A =TFyn. Ift < q, the symmetric multilinear complexity of
the product of t variables is linear in m. If t > q, then there is no
symmetric decomposition.

Proof.
Generalization of the Chudnovsky-Chudnovsky method:
evaluation-interpolation on curves with many points. O
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BACK ON TRISYMMETRY

Corollary

Let A = Fgn and q > 3. Then the trisymmetric complexity ,uf{i(m)
is linear in m.

Proof.

Taking the trace on a symmetric decomposition for the 3
variable product xyz gives a trisymmetric decompositon for the
product xy. O
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» any bilinear map can be studied, not just multiplication
Symmetric complexity:

» Generalization to the case of t-variable products
Trisymmetric complexity:

» small values can be found through exhaustive search

» is linear in the extension degree

Future work:

tri

q
» find better bounds than those already known

Thank you!

» distinguish " from ,uf,ym forg >3
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