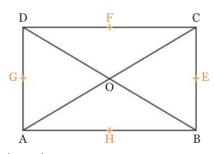
Exercice 1.

On considère le rectangle ABCD ci-contre, avec E, F, G, et H les milieux respectifs des côtés [BC], [CD], [DA] et [AB]. Le point O est l'intersection des diagonales du rectangle. Apparier chaque expression du produit scalaire avec son expression simplifiée.

2.
$$\overrightarrow{AG} \cdot \overrightarrow{AF}$$

3.
$$\overrightarrow{AF} \cdot \overrightarrow{AB}$$

$$4. \ \overrightarrow{AD} \cdot \overrightarrow{AF}$$



a.
$$\overrightarrow{AH} \cdot \overrightarrow{AB}$$

b.
$$\overrightarrow{AD} \cdot \overrightarrow{AD}$$

c.
$$\overrightarrow{AG} \cdot \overrightarrow{AD}$$

d.
$$\overrightarrow{AB} \cdot \overrightarrow{AB}$$

Exercice 2.

Dans une unité de longueur donnée, on considère un carré ABCD dont le côté mesure 3, accolé à deux rectangles identiques BEFC et EGHF de largeur 2. Calculer les produits scalaires suivants.

1.
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$

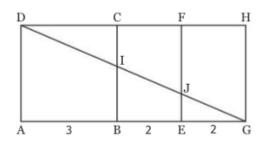
2.
$$\overrightarrow{BA} \cdot \overrightarrow{BB}$$

1.
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$
 2. $\overrightarrow{BA} \cdot \overrightarrow{BF}$ 3. $\overrightarrow{EI} \cdot \overrightarrow{AG}$
4. $\overrightarrow{CF} \cdot \overrightarrow{GD}$ 5. $\overrightarrow{IC} \cdot \overrightarrow{HG}$ 6. $\overrightarrow{EJ} \cdot \overrightarrow{FA}$

4.
$$\overrightarrow{CF} \cdot \overrightarrow{GI}$$

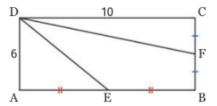
5.
$$\overrightarrow{IC} \cdot \overrightarrow{HC}$$

6.
$$\overrightarrow{EI} \cdot \overrightarrow{FA}$$



Exercice 3.

On considère le rectangle ABCD de longueur 10 et de largeur 6. Le point E est le milieu de [AB]et F est le milieu de [BC]. Déterminer les valeurs exactes des produits scalaires suivants.



1.
$$\overrightarrow{DA} \cdot \overrightarrow{DB}$$

2.
$$\overrightarrow{DC} \cdot \overrightarrow{DF}$$

1.
$$\overrightarrow{DA} \cdot \overrightarrow{DB}$$
 2. $\overrightarrow{DC} \cdot \overrightarrow{DF}$ 3. $\overrightarrow{DA} \cdot \overrightarrow{DC}$

4.
$$\overrightarrow{DE} \cdot \overrightarrow{DF}$$

5.
$$\overrightarrow{DF} \cdot \overrightarrow{DB}$$

Exercice 4. On considère les points A(5;-3), B(-2;7), $C(\frac{-1}{2};0)$ et $D(-5;\frac{3}{4})$. Calculer les produits scalaires

1.
$$\overrightarrow{AB} \cdot \overrightarrow{CD}$$

2.
$$\overrightarrow{AC} \cdot \overrightarrow{BD}$$

3.
$$\overrightarrow{AD} \cdot \overrightarrow{BC}$$

Exercice 5. Soient $\overrightarrow{u} \begin{pmatrix} 2 \\ x \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ deux vecteurs du plan avec $x \in \mathbb{R}$ un réel. Déterminer la valeur de x pour obtenir

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} = 2$$

$$\mathbf{2.} \ \overrightarrow{u} \cdot \overrightarrow{v} = -5$$

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} = 2$$
 2. $\overrightarrow{u} \cdot \overrightarrow{v} = -5$ 3. $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{7}{3}$ 4. $\overrightarrow{u} \cdot \overrightarrow{v} = \sqrt{8}$

$$\mathbf{4.} \ \overrightarrow{u} \cdot \overrightarrow{v} = \sqrt{8}$$

Exercice 6. On considère les points A, B et C tels que AB = 7, $AC = \sqrt{5}$ et $\widehat{BAC} = 120^{\circ}$. Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Exercice 7. On donne $||\overrightarrow{u}|| = 2$, $||\overrightarrow{v}|| = \sqrt{3}$ et $\overrightarrow{u} \cdot \overrightarrow{v} = \sqrt{6}$. Donner une valeur en degrés de l'angle entre les deux vecteurs.

Exercice 8. Déterminer les éventuelles valeurs du réel x pour lesquelles les vecteurs \overrightarrow{u} et \overrightarrow{w} sont orthogonaux.

1.
$$\overrightarrow{u} \begin{pmatrix} 6 \\ x \end{pmatrix}$$
 et $\overrightarrow{v} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$
2. $\overrightarrow{u} \begin{pmatrix} -3 \\ x \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} x - 1 \\ 4 \end{pmatrix}$
3. $\overrightarrow{u} \begin{pmatrix} x \\ -2 \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} 3 \\ 8 \end{pmatrix}$
4. $\overrightarrow{u} \begin{pmatrix} x \\ -2 \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} x \\ 8 \end{pmatrix}$

Exercice 9. On considère les points du plan suivants : A(-10;4), B(-4;1) et C(-1;7).

- 1. En utilisant le produit scalaire, montrer que le triangle ABC est un triangle rectangle.
- 2. Déterminer les coordonnées du point D tel que le quadrilatère ABCD soit un rectangle.

Exercice 10. (**) On considère le point A(3;0) et la maire d d'équation 3x - 2y + 4 = 0. On note H le projeté orthogonal du point A sur la droite d.

- 1. On note h l'abscisse du point H. Écrire l'ordonnée de H en fonction de h.
- 2. Déterminer la valeur de h en utilisant un produit scalaire.
- 3. Quelles sont les coordonnées de H?
- 4. En déduire la distance du point A à la droite d, définie par la longueur AH.

Exercice 11. (**) On considère le point A(4;5) et la droite d d'équation 5x + 4y + 1 = 0. On note H le projeté orthogonal du point A sur la droite d. En appliquant la même méthode que dans l'exercice précédent, calculer la distance du point A à la droite d.

Exercice 12. Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls.

- 1. Supposons que \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.
 - (a) Quelle est la valeur de $\cos(\overrightarrow{u}, \overrightarrow{v})$?
 - (b) En déduire la valeur de $\overrightarrow{u} \cdot \overrightarrow{v}$.
- 2. Supposons maintenant que $\overrightarrow{u} \cdot \overrightarrow{v} = 0$
 - (a) Pourquoi peut-on affirmer que $\cos(\overrightarrow{u}, \overrightarrow{v}) = 0$?
 - (b) Que peut-on alors dire de \overrightarrow{u} et \overrightarrow{v} ?
- 3. Qu'a-t-on prouvé dans cet exercice?

Exercice 13. (**) En utilisant la relation de Chasles et la distributivité du produit scalaire, prouver le résultat connu « les diagonales d'un losange sont perpendiculaires ».

Exercice 14.

On considère un carré ABCD de côté 1 et un point M quelconque sur le segment [BD]. On construit les projetés orthogonaux H et K du point M respectivement sur les côtés [AB]et [AD].

- 1. On veut démontrer que les droites (CK) et (DH) sont perpendiculaires par deux méthodes.
 - (a) On utilisera le repère (A; B, D) et on notera (x; y) les coordonnées du point M.
 - (b) On calculera le produit scalaire $\overrightarrow{CK} \cdot \overrightarrow{DH}$ en dé- \mathbf{K} composant les vecteurs à l'aide de la relation de Chasles.
- 2. Démontrer que les longueurs CK et DH sont égales :
 - (a) avec des coordonnées;
 - (b) sans coordonnées.

